skchange provides sktime-compatible change detection and changepoint-based anomaly detection algorithms.
Experimental but maturing.
It is recommended to install skchange with numba for faster performance:
pip install skchange[numba]
Alternatively, you can install skchange without numba:
pip install skchange
from skchange.change_detectors import MovingWindow
from skchange.datasets import generate_piecewise_normal_data
df = generate_piecewise_normal_data(
means=[0, 5, 10, 5, 0],
lengths=[50, 50, 50, 50, 50],
seed=1,
)
detector = MovingWindow(bandwidth=20)
detector.fit_predict(df)
ilocs
0 50
1 100
2 150
3 200
from skchange.anomaly_detectors import CAPA
from skchange.anomaly_scores import L2Saving
from skchange.compose.penalised_score import PenalisedScore
from skchange.datasets import generate_piecewise_normal_data
from skchange.penalties import make_linear_chi2_penalty
df = generate_piecewise_normal_data(
means=[0, 8, 0, 5],
lengths=[100, 20, 130, 50],
proportion_affected=[1.0, 0.1, 1.0, 0.5],
n_variables=10,
seed=1,
)
score = L2Saving() # Looks for segments with non-zero means.
penalty = make_linear_chi2_penalty(score.get_model_size(1), df.shape[0], df.shape[1])
penalised_score = PenalisedScore(score, penalty)
detector = CAPA(penalised_score, find_affected_components=True)
detector.fit_predict(df)
ilocs labels icolumns
0 [100, 120) 1 [0]
1 [250, 300) 2 [2, 0, 3, 1, 4]
skchange is a free and open-source software licensed under the BSD 3-clause license.