Skip to content

NevroHelios/CrossEmotion

Repository files navigation

Cross-Dataset Emotion Recognition Benchmark (MELD vs IFEED)

Author: NevroHelios Last Updated: 11 June 2025

🎯 Objective

Compare video (MELD) and image (IFEED) emotion recognition performance through:

  1. Modality-specific baseline models
  2. Cross-dataset transfer learning experiments
  3. Character-wise analysis (Friends TV cast)

📥 Data Preparation

MELD Dataset (Video)

# Download from official source
git clone https://github.com/declare-lab/MELD.git
mv MELD/data/MELD.Raw data/meld_raw

IFEED Dataset (Images)

# Request dataset from original paper authors
wget researchlab2.iiit.ac.in/ifeed/IFEED_170x140_v3.tar.gz
tar -xzf IFEED_170x140_v3.tar.gz -C data/ifeed_raw

🛠️ Installation

conda create -n emotion python=3.12
conda activate emotion
pip install -r requirements.txt  

Preliminary MELD Benchmarks

Model Val Accuracy F1-Score Inference Speed
CNN-LSTM (Baseline) 63.2% 0.61 87ms/video
Custom 3D-CNN 67.8% 0.65 104ms/video

🚧 TODO

  • MELD (Video, Text, Audio)

    • Dataloader for MELD (video & text)
    • Vision model class (pretrained rd3_18)
    • Text model class (pretrained bert)
    • Audio model class (Conformer, non-pretrained)
    • Multimodal dataloader (combine modalities)
    • FusionModel (text + audio + video)
      • Integrate vision encoder (1r3d-18)
      • Integrate text encoder (bert)
      • Integrate audio encoder (conformer)
      • Attention-based fusion layer
    • Train & benchmark pretrained models
    • Evaluate need for custom models (if pretrained underperforms)
    • Benchmark on MELD (accuracy, F1, speed)
  • IFEED (Images)

    • Dataloader for IFEED (170x140px images)
    • Vision model class (ResNet-50 baseline, pretrained)
    • Training & inference pipeline
    • Benchmark on IFEED37
  • Deployment

    • Web demo using Gradio
    • SaaS API endpoint (FastAPI)

📊 Expected Benchmarks

Metric MELD Target IFEED Target
Accuracy 72% 85%
F1-Score 0.71 0.87
Inference Speed Note: Dataset licenses

About

MELD-IFEED-Benchmark

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages