Skip to content

NJUVISION/ResULIC

Repository files navigation

Ultra Lowrate Image Compression with Semantic Residual Coding and Compression-aware Diffusion

Anle Ke1·   Xu Zhang1·   Tong Chen1·   Ming Lu1·   Chao Zhou2·   Jiawen Gu2·   Zhan Ma1   

1 Nanjing University   2Kuaishou Technology 

🌐 Project Page📃 Paper


📖 Table Of Contents

⚙️ Environment Setup

- conda create -n ResULIC python=3.10
- conda activate ResULIC
- pip install -r requirements.txt

✨ Visual Results


⏳ Train

Note: The numbers in the yaml filenames (e.g., 1_1_1) represent $\lambda_{\text{diffusion}}$, $\lambda_{\text{mse}}$, and $\lambda_{\text{bpp}}$ respectively.

Stage 1: Initial Training

  1. Download Pretrained Model
    Download the pretrained Stable Diffusion v2.1 model into the ./weight directory:

    wget https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.ckpt --no-check-certificate -P ./weight
    
  2. Modify the configuration file./configs/train_zc_eps.yaml and ./configs/model/stage1/xx.yaml accordingly.

  3. Start training.

    bash stage1.sh 
    

Stage 2:

  1. Modify the configuration file ./configs/train_stage2.yaml and ./configs/model/stage2/xx.yaml accordingly.

  2. Start training.

    bash stage2.py 
    

😀 Inference

Note: It is recommended to set "ddim_steps" to a number that is divisible by "add_steps". For example, when add_steps=600, ddim_steps could be 2, 3, 5...

  1. W/o Srr, W/o Pfo.

    CUDA_VISIBLE_DEVICES=2 python inference_win.py \
     --ckpt xx \
     --config /xx/xx.yaml \
     --output xx/ \
     --ddim_steps 3 \
     --ddim_eta 0 \
     --Q x.0 \
     --add_steps x00
    
  2. W/ Srr, W/o Pfo.

     CUDA_VISIBLE_DEVICES=2 python inference_res.py \
     --ckpt xx \
     --config /xx/xx.yaml \
     --output xx/ \
     --ddim_steps 3 \
     --ddim_eta 0 \
     --Q x.0 \
     --add_steps x00
    

🌊 TODO

  • Release code
  • Release quantitative metrics (👾The quantitative metrics for ResULIC presented in our paper can be found in indicator.)
  • Release pretrained models (Coming soon)

This work is based on ControlNet, ControlNet-XS, DiffEIC, and ELIC, thanks to their invaluable contributions.

🙇‍ Citation

If you find our work useful, please consider citing:

@inproceedings{Ke2025resulic,
               author = {Ke, Anle and Zhang, Xu and Chen, Tong and Lu, Ming and Zhou, Chao and Gu, Jiawen and Ma, Zhan},
               title = {Ultra Lowrate Image Compression with Semantic Residual Coding and Compression-aware Diffusion},
               booktitle = {International Conference on Machine Learning},
               year = {2025}
               }

About

[ICML 2025] Ultra Lowrate Image Compression with Semantic Residual Coding and Compression-Aware Diffusion

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published