Official implementation of "On Spatiotemporal Relation Modeling of Event: Parallel Denoising and No-Reference Evaluation".
Python 3.10
Pytorch 2.2.1
CUDA 11.8
cudnn 8
conda create -n EventDenoising python=3.10
conda activate EventDenoising
pip install -r requirements.txt
Require additional install mamba-ssm==2.2.2 and pytorch3d==0.7.5.
# Testing SNR with DVSCLEAN Dataset
python eval_DVSCLEAN.py
# Testing AUC with DND21 Dataset
python eval_DND21.py
# Testing ENR with DND21 Dataset
python eval_enrr_DND21.py
# Testing ENR with ED24 Dataset
python eval_enrr_ED24.py
# EDfromer++ train
python train_edformer_plus.py
# ENRR train
python train_enrr.py
You can use the sample data in ./data for quick testing, or download the complete dataset from the link below for full evaluation or model training.
Dataset | Usage |
---|---|
ED24 | EDformer++ and ENRR Training |
DND21 | AUC and ENR Evaluation |
DVSCLEAN | SNR Evaluation |
ED-KoGTL | SNR Evaluation |
E-MLB | MESR Evaluation |
For technical issues, please contact: 📧 jiangbin@smail.nju.edu.cn