Skip to content

Molecular Arrest Framework - Unifying theory for dampening compounds in biological regulation (10 compounds, 44 predictions, FAIR² compliant)

License

Notifications You must be signed in to change notification settings

Mythmaker28/arrest-molecules

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Molecular Arrest in Biological Regulation

DOI Latest Release GitHub Release Date License: CC-BY-4.0 License: MIT Python CI Tests

Framework théorique pour l'étude des composés induisant des pauses biologiques productives

📢 Version actuelle : v1.1.1 | 📥 Télécharger la dernière release | 📖 Notes de version


Version actuelle (latest): v1.1.1 ⭐
Date de release : 23 October 2025
DOI Zenodo : 10.5281/zenodo.17420685

Author: Tommy Lepesteur
ORCID: 0009-0009-0577-9563
License: CC-BY 4.0 (data), MIT License (code)
Repository: https://github.com/Mythmaker28/arrest-molecules

ℹ️ Cette page pointe toujours vers les assets de la dernière release. Les liens ci-dessous se mettent à jour automatiquement.


Description

This data package accompanies the manuscript "Molecular Arrest in Biological Regulation: A Unifying Framework for Natural Compounds with Dampening Effects" submitted to Frontiers in Pharmacology.

The package contains:

  • Curated molecular properties for 10 paradigmatic compounds spanning the full arrest-oscillation continuum
  • Calculated pharmacological metrics (API, EMC, NCR, AKR, PARI)
  • Uncertainty quantification via Monte Carlo simulation
  • Confidence grading for 44 quantitative predictions
  • Executable code for reproducing all calculations
  • 5 extended case studies (ibogaine/noribogaine, resveratrol, fasting/breathing, psilocybin/LSD, AI memory)
  • Data dictionary and usage protocols

No new experimental data were generated. All values are derived from published literature (95+ primary sources cited in main manuscript and supplements).


Files Included

Core Data Tables

1. Compound_Properties_Database.csv (10 rows × 36 columns)

  • Molecular properties: formula, MW, logP, rotatable bonds, SMILES, InChI
  • Binding parameters: K_i, K_d, EC₅₀, k_off
  • Pharmacokinetics: t₁/₂, C_max, AUC, V_d, clearance, protein binding
  • New compounds: Ibogaine, Noribogaine, Psilocybin, LSD (arrest-oscillation continuum)
  • Literature sources: PubMed IDs for each parameter

2. API_Calculations_Full.xlsx (multi-sheet workbook)

  • Sheet 1: Input parameters with literature sources
  • Sheet 2: Step-by-step API calculations (absolute → relative)
  • Sheet 3: Monte Carlo simulation results (10,000 iterations per compound)
  • Sheet 4: 95% confidence intervals
  • Sheet 5: Sensitivity analysis (varying parameters ±30%)

3. Confidence_Grading_Matrix.csv (44 rows × 6 columns)

  • All quantitative predictions from manuscript
  • Evidence type (direct/indirect/extrapolated)
  • Confidence level (high/moderate/low)
  • Validation requirements

4. Experimental_Protocols_Summary.csv (3 rows × 12 columns)

  • Design parameters for Experiments 1-3
  • Sample sizes with power calculations
  • Primary/secondary outcomes
  • Success/falsification criteria
  • Estimated costs and timelines

Code and Scripts

5. Python_Code_API_Monte_Carlo.py

  • Fully commented Python 3.8+ script
  • Calculates API with uncertainty propagation
  • Requires: numpy, pandas, matplotlib
  • Runtime: <10 seconds on standard laptop
  • Outputs: API values with 95% CI, diagnostic plots

6. R_Code_Figures_S2.R

  • Generates 3-panel oscillatory advantage figure
  • Requires: ggplot2, dplyr, survival, patchwork
  • Customizable parameters (colors, font sizes)
  • Exports 300 dpi TIFF files

Documentation

7. Data_Dictionary.md

  • Complete variable definitions
  • Units and measurement methods
  • Abbreviations and ontology terms
  • Quality control procedures

8. Literature_Search_Strategy.md

  • PubMed search terms and filters
  • PRISMA-style flowchart (1,247 abstracts screened → 95 retained)
  • Inclusion/exclusion criteria
  • Data extraction protocol

9. Case_Studies_Supplement.md ⭐ NEW

  • Extended Case Study 1: Ibogaine & Noribogaine (hybrid arrest, addiction reset)
  • Extended Case Study 2: Resveratrol & SIRT1 (minimal arrest, negative control)
  • Extended Case Study 3: Fasting & Breathing (natural oscillators)
  • Extended Case Study 4: Psilocybin & LSD (high-entropy oscillation, DMN dissolution)
  • Extended Case Study 5: AI Memory (computational extension of arrest principles)

⚡ Quick Start (60 seconds)

# 1. Clone & install
git clone https://github.com/Mythmaker28/arrest-molecules.git
cd arrest-molecules
pip install -r Data_Package_FAIR2/requirements.txt

# 2. Run API calculations
cd Data_Package_FAIR2
python Python_Code_API_Monte_Carlo.py --all

Output: API values with 95% CI for all 10 compounds

📖 Detailed guide: See QUICKSTART.md for more examples


Quick Start Guide

For users wanting to verify API calculations:

  1. Open Compound_Properties_Database.csv
  2. Identify compound of interest (e.g., Rapamycin)
  3. Note parameters: K_d = 0.1 nM, τ_residence = 120 min, t_onset = 1440 min, EC₅₀ = 1 nM
  4. Run Python script:
    python Python_Code_API_Monte_Carlo.py --compound Rapamycin
  5. Output: API = 0.12 [95% CI: 0.08-0.16], Confidence: MODERATE

For users wanting to extend framework to new compounds:

  1. Gather required parameters (K_d, k_off or duration, t_onset, EC₅₀)
  2. Add row to Compound_Properties_Database.csv
  3. Run Python script with --new_compound flag
  4. Compare API to reference standards (Table 1 in manuscript)
  5. Assign arrest level based on EMC/NCR/PARI criteria

For users wanting to reproduce figures:

  1. Ensure R packages installed: install.packages(c("ggplot2", "dplyr", "patchwork"))
  2. Run: Rscript R_Code_Figures_S2.R
  3. Figures saved to ./output/ directory as TIFF (300 dpi)

Data Dictionary (Abbreviated)

Compound_Properties_Database.csv

Column Name Description Units Data Type Example
Compound_Name Chemical name String Salvinorin A
CAS_Number Chemical Abstracts Service registry String 83729-01-5
SMILES Simplified molecular-input line-entry system String COC(=O)[C@]12[C@@]3...
InChI International Chemical Identifier String InChI=1S/C23H28O8...
Molecular_Formula Elemental composition String C23H28O8
Molecular_Weight Molecular mass g/mol Numeric 432.47
LogP Octanol-water partition coefficient Numeric 2.73
Rotatable_Bonds Count of freely rotatable bonds Integer 3
Primary_Target Main molecular target String Kappa-opioid receptor
Target_Gene Gene symbol String OPRK1
K_i Inhibition constant nM Numeric 1.8
K_i_Source_PMID PubMed ID for K_i value Integer 12202542
K_d Dissociation constant nM Numeric 1.8
k_off Dissociation rate constant min⁻¹ Numeric 0.04
tau_residence Residence time (1/k_off) min Numeric 25
t_onset Time to 50% effect min Numeric 1
EC50 Half-maximal effective conc. nM Numeric 2
EC50_Assay Functional assay type String GIRK activation
t_half_plasma Plasma half-life h Numeric 0.15
Cmax Peak plasma concentration ng/mL Numeric 2.4
AUC Area under curve ng·h/mL Numeric 15
Vd Volume of distribution L/kg Numeric 3.2
Clearance Systemic clearance L/h/kg Numeric 12.5
Protein_Binding Plasma protein binding % Numeric 89
API_absolute Arrest Potency Index (absolute) nM⁻² Numeric 6.95
API_relative API normalized to salvinorin A Numeric 1.00
API_CI_lower 95% CI lower bound Numeric 0.85
API_CI_upper 95% CI upper bound Numeric 1.15
AKR Arrest Kinetics Ratio Numeric 1.5
EMC Entropy Modulation Coefficient Numeric -0.4
NCR Network Connectivity Reduction % Numeric 50
PARI Post-Arrest Resilience Index Numeric 0.3
Arrest_Level Classification (1/2/3) String Level 3
Confidence_Grade Overall data quality String MODERATE

Missing Data Encoding

  • NA: Not applicable (e.g., EMC for non-neural compounds)
  • ND: Not determined (measurement not yet performed)
  • NR: Not reported in literature
  • EST: Estimated value (not directly measured)

Usage Notes

Target Audience

  • Pharmacologists validating framework predictions
  • Medicinal chemists designing novel arrest agents
  • Systems biologists studying network dynamics
  • Clinicians exploring chronopharmacology applications
  • Educators teaching quantitative pharmacology

How to Cite This Work

For the dataset:

Lepesteur T. (2025). Molecular Arrest Framework Research Data Package (v1.1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.17420685

For the manuscript:

Lepesteur T. Molecular Arrest in Biological Regulation: A Unifying Framework for Natural Compounds with Dampening Effects. Manuscript in preparation (2025)

For the code:

Lepesteur T. (2025). molecular-arrest-framework: API calculation tools (v1.1.0). GitHub. https://github.com/Mythmaker28/arrest-molecules

BibTeX:

@dataset{lepesteur2025molecular,
  author       = {Lepesteur, Tommy},
  title        = {Molecular Arrest Framework Research Data Package},
  year         = 2025,
  publisher    = {Zenodo},
  version      = {v1.1.0},
  doi          = {10.5281/zenodo.17420685},
  url          = {https://doi.org/10.5281/zenodo.17420685}
}

Note: This DOI is the concept DOI that always points to the latest version. For citing a specific version, use the version-specific DOI from the Zenodo record.


Version History

v1.1.1 (October 2025): ⭐ CURRENT (Reproducibility Patch)

  • ✅ Quick check script for instant validation (< 1s)
  • ✅ Full CI/CD reproducibility workflow
  • ✅ Automated artifact verification
  • ✅ SHA256 checksums for all assets
  • ✅ DOI Zenodo integrated everywhere
  • ✅ 1-click reproducibility guaranteed (< 3 min)

v1.1.0 (October 2025):

  • Extended dataset: 6 → 10 compounds (+67%)
  • New compounds: Ibogaine, Noribogaine (hybrid arrest), Psilocybin, LSD (oscillation)
  • Case studies supplement: 5 detailed case studies spanning arrest-oscillation continuum
  • requirements.txt: Explicit Python dependencies with versions
  • Updated predictions: 42 → 44 with refined confidence grading
  • Enhanced documentation: 95+ literature sources

v1.0 (October 2025):

  • Initial release accompanying manuscript submission
  • 6 core arrest compounds characterized
  • 44 predictions with confidence grading
  • Monte Carlo uncertainty quantification implemented

Planned updates:

  • v1.2: Add salvinorin A analogs (8 compounds) from Supplementary Table S2
  • v2.0: Incorporate Experiment 1 results (salvinorin fMRI data) when available
  • v2.1: Incorporate Experiment 2 results (oscillatory cellular lifespan)
  • v3.0: Clinical validation from Experiment 3 (TRD trial)

Contact and Support

Questions: tommy.lepesteur@hotmail.fr
Issue tracking: https://github.com/Mythmaker28/arrest-molecules/issues
Contributions: Pull requests welcome for novel compound additions (requires literature sources)

Controlled access requests (for synthesis protocols): Email corresponding author with:

  1. Institutional email (no personal addresses)
  2. IRB approval documentation (PDF)
  3. Research protocol summary (1 page)
  4. Statement of intended use (therapeutic research only)

Response within 7 business days.


License and Reuse

Data: Creative Commons Attribution 4.0 International (CC-BY 4.0)

  • ✓ Share and adapt freely
  • ✓ Provide attribution
  • ✓ Indicate if changes made

Code: MIT License

  • ✓ Use commercially or non-commercially
  • ✓ Modify and distribute
  • ✓ Include original license notice

Restrictions: Synthesis protocols for high-potency analogs subject to controlled access (see Data Availability Statement in manuscript Section "Data Availability Statement").


Acknowledgments

Data compilation supported by independent literature review with quality verification by an external consultant. Database access via freely available public resources (DrugBank, PubChem, ChEMBL).


Changelog & Release Notes

v1.1 (2025-10-21) - Extended Dataset & Case Studies ⭐

Dataset expansion (+67%) :

  • 4 nouveaux composés ajoutés : Ibogaine, Noribogaine, Psilocybin, LSD
  • Dataset : 6 → 10 composés couvrant tout le continuum arrest-oscillation
  • Ibogaine/Noribogaine : Arrest hybride DAT/SERT/κ-opioid, mécanisme addiction reset
  • Psilocybin/LSD : Oscillation haute entropie (EMC positif), dissolution DMN

Nouveau supplément : Case_Studies_Supplement.md (5 études détaillées) :

  1. Ibogaine & Noribogaine : Hybrid arrest, GDNF neuroplasticity, addiction reset
  2. Resveratrol & SIRT1 : Minimal arrest (témoin négatif), échec seuil
  3. Fasting & Breathing : Natural oscillators, physiological arrest principles
  4. Psilocybin & LSD : High-entropy oscillation, DMN connectivity, TRD applications
  5. AI Memory Extension : Dropout/consolidation parallels, computational arrest

Documentation améliorée :

  • requirements.txt créé avec versions exactes (numpy 1.24.3, pandas 2.0.3, etc.)
  • Références bibliographiques : 85 → 95+ sources
  • Prédictions : 42 → 44 (ajout métabolites psychédéliques)

Statistiques mises à jour dans README :

  • Compound_Properties_Database.csv : 10 lignes, 36 colonnes
  • Literature sources : 95+ PMIDs
  • Case studies : 5 (vs 0 précédemment)

v1.0.1 (2025-10-21) - Corrections Post-Rapport

Harmonisation prédictions (42→44) :

  • Nombre de prédictions corrigé dans v6.txt pour correspondre au CSV
  • Statistiques de confiance recalculées : High 18/44 (41%), Moderate 13/44 (30%), Low 13/44 (30%)

Fichiers manquants créés (5) :

  • Experimental_Protocols_Summary.csv, R_Code_Figures_S2.R, Data_Dictionary.md
  • Literature_Search_Strategy.md, API_Calculations_Full.xlsx

Figures brouillons créés (3) :

  • Figure_S1_Molecular_Structures_draft.png, Figure_S2_Oscillatory_Advantage_draft.png/tiff
  • Figure_S3_API_Flowchart_draft.png

Améliorations code :

  • Option --random-seed ajoutée au script Python (défaut 42 reproductible)

v1.0 (2025-10-21) - Initial Release

2025-10-21: Dataset created, v1.0 submitted with manuscript

About

Molecular Arrest Framework - Unifying theory for dampening compounds in biological regulation (10 compounds, 44 predictions, FAIR² compliant)

Topics

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Packages

No packages published