Framework théorique pour l'étude des composés induisant des pauses biologiques productives
📢 Version actuelle : v1.1.1 | 📥 Télécharger la dernière release | 📖 Notes de version
Version actuelle (latest): v1.1.1 ⭐
Date de release : 23 October 2025
DOI Zenodo : 10.5281/zenodo.17420685
Author: Tommy Lepesteur
ORCID: 0009-0009-0577-9563
License: CC-BY 4.0 (data), MIT License (code)
Repository: https://github.com/Mythmaker28/arrest-molecules
ℹ️ Cette page pointe toujours vers les assets de la dernière release. Les liens ci-dessous se mettent à jour automatiquement.
This data package accompanies the manuscript "Molecular Arrest in Biological Regulation: A Unifying Framework for Natural Compounds with Dampening Effects" submitted to Frontiers in Pharmacology.
The package contains:
- Curated molecular properties for 10 paradigmatic compounds spanning the full arrest-oscillation continuum
- Calculated pharmacological metrics (API, EMC, NCR, AKR, PARI)
- Uncertainty quantification via Monte Carlo simulation
- Confidence grading for 44 quantitative predictions
- Executable code for reproducing all calculations
- 5 extended case studies (ibogaine/noribogaine, resveratrol, fasting/breathing, psilocybin/LSD, AI memory)
- Data dictionary and usage protocols
No new experimental data were generated. All values are derived from published literature (95+ primary sources cited in main manuscript and supplements).
1. Compound_Properties_Database.csv (10 rows × 36 columns)
- Molecular properties: formula, MW, logP, rotatable bonds, SMILES, InChI
- Binding parameters: K_i, K_d, EC₅₀, k_off
- Pharmacokinetics: t₁/₂, C_max, AUC, V_d, clearance, protein binding
- New compounds: Ibogaine, Noribogaine, Psilocybin, LSD (arrest-oscillation continuum)
- Literature sources: PubMed IDs for each parameter
2. API_Calculations_Full.xlsx (multi-sheet workbook)
- Sheet 1: Input parameters with literature sources
- Sheet 2: Step-by-step API calculations (absolute → relative)
- Sheet 3: Monte Carlo simulation results (10,000 iterations per compound)
- Sheet 4: 95% confidence intervals
- Sheet 5: Sensitivity analysis (varying parameters ±30%)
3. Confidence_Grading_Matrix.csv (44 rows × 6 columns)
- All quantitative predictions from manuscript
- Evidence type (direct/indirect/extrapolated)
- Confidence level (high/moderate/low)
- Validation requirements
4. Experimental_Protocols_Summary.csv (3 rows × 12 columns)
- Design parameters for Experiments 1-3
- Sample sizes with power calculations
- Primary/secondary outcomes
- Success/falsification criteria
- Estimated costs and timelines
5. Python_Code_API_Monte_Carlo.py
- Fully commented Python 3.8+ script
- Calculates API with uncertainty propagation
- Requires: numpy, pandas, matplotlib
- Runtime: <10 seconds on standard laptop
- Outputs: API values with 95% CI, diagnostic plots
6. R_Code_Figures_S2.R
- Generates 3-panel oscillatory advantage figure
- Requires: ggplot2, dplyr, survival, patchwork
- Customizable parameters (colors, font sizes)
- Exports 300 dpi TIFF files
7. Data_Dictionary.md
- Complete variable definitions
- Units and measurement methods
- Abbreviations and ontology terms
- Quality control procedures
8. Literature_Search_Strategy.md
- PubMed search terms and filters
- PRISMA-style flowchart (1,247 abstracts screened → 95 retained)
- Inclusion/exclusion criteria
- Data extraction protocol
9. Case_Studies_Supplement.md ⭐ NEW
- Extended Case Study 1: Ibogaine & Noribogaine (hybrid arrest, addiction reset)
- Extended Case Study 2: Resveratrol & SIRT1 (minimal arrest, negative control)
- Extended Case Study 3: Fasting & Breathing (natural oscillators)
- Extended Case Study 4: Psilocybin & LSD (high-entropy oscillation, DMN dissolution)
- Extended Case Study 5: AI Memory (computational extension of arrest principles)
# 1. Clone & install
git clone https://github.com/Mythmaker28/arrest-molecules.git
cd arrest-molecules
pip install -r Data_Package_FAIR2/requirements.txt
# 2. Run API calculations
cd Data_Package_FAIR2
python Python_Code_API_Monte_Carlo.py --allOutput: API values with 95% CI for all 10 compounds
📖 Detailed guide: See QUICKSTART.md for more examples
- Open
Compound_Properties_Database.csv - Identify compound of interest (e.g., Rapamycin)
- Note parameters: K_d = 0.1 nM, τ_residence = 120 min, t_onset = 1440 min, EC₅₀ = 1 nM
- Run Python script:
python Python_Code_API_Monte_Carlo.py --compound Rapamycin
- Output: API = 0.12 [95% CI: 0.08-0.16], Confidence: MODERATE
- Gather required parameters (K_d, k_off or duration, t_onset, EC₅₀)
- Add row to
Compound_Properties_Database.csv - Run Python script with
--new_compoundflag - Compare API to reference standards (Table 1 in manuscript)
- Assign arrest level based on EMC/NCR/PARI criteria
- Ensure R packages installed:
install.packages(c("ggplot2", "dplyr", "patchwork")) - Run:
Rscript R_Code_Figures_S2.R - Figures saved to
./output/directory as TIFF (300 dpi)
| Column Name | Description | Units | Data Type | Example |
|---|---|---|---|---|
| Compound_Name | Chemical name | — | String | Salvinorin A |
| CAS_Number | Chemical Abstracts Service registry | — | String | 83729-01-5 |
| SMILES | Simplified molecular-input line-entry system | — | String | COC(=O)[C@]12[C@@]3... |
| InChI | International Chemical Identifier | — | String | InChI=1S/C23H28O8... |
| Molecular_Formula | Elemental composition | — | String | C23H28O8 |
| Molecular_Weight | Molecular mass | g/mol | Numeric | 432.47 |
| LogP | Octanol-water partition coefficient | — | Numeric | 2.73 |
| Rotatable_Bonds | Count of freely rotatable bonds | — | Integer | 3 |
| Primary_Target | Main molecular target | — | String | Kappa-opioid receptor |
| Target_Gene | Gene symbol | — | String | OPRK1 |
| K_i | Inhibition constant | nM | Numeric | 1.8 |
| K_i_Source_PMID | PubMed ID for K_i value | — | Integer | 12202542 |
| K_d | Dissociation constant | nM | Numeric | 1.8 |
| k_off | Dissociation rate constant | min⁻¹ | Numeric | 0.04 |
| tau_residence | Residence time (1/k_off) | min | Numeric | 25 |
| t_onset | Time to 50% effect | min | Numeric | 1 |
| EC50 | Half-maximal effective conc. | nM | Numeric | 2 |
| EC50_Assay | Functional assay type | — | String | GIRK activation |
| t_half_plasma | Plasma half-life | h | Numeric | 0.15 |
| Cmax | Peak plasma concentration | ng/mL | Numeric | 2.4 |
| AUC | Area under curve | ng·h/mL | Numeric | 15 |
| Vd | Volume of distribution | L/kg | Numeric | 3.2 |
| Clearance | Systemic clearance | L/h/kg | Numeric | 12.5 |
| Protein_Binding | Plasma protein binding | % | Numeric | 89 |
| API_absolute | Arrest Potency Index (absolute) | nM⁻² | Numeric | 6.95 |
| API_relative | API normalized to salvinorin A | — | Numeric | 1.00 |
| API_CI_lower | 95% CI lower bound | — | Numeric | 0.85 |
| API_CI_upper | 95% CI upper bound | — | Numeric | 1.15 |
| AKR | Arrest Kinetics Ratio | — | Numeric | 1.5 |
| EMC | Entropy Modulation Coefficient | — | Numeric | -0.4 |
| NCR | Network Connectivity Reduction | % | Numeric | 50 |
| PARI | Post-Arrest Resilience Index | — | Numeric | 0.3 |
| Arrest_Level | Classification (1/2/3) | — | String | Level 3 |
| Confidence_Grade | Overall data quality | — | String | MODERATE |
- NA: Not applicable (e.g., EMC for non-neural compounds)
- ND: Not determined (measurement not yet performed)
- NR: Not reported in literature
- EST: Estimated value (not directly measured)
- Pharmacologists validating framework predictions
- Medicinal chemists designing novel arrest agents
- Systems biologists studying network dynamics
- Clinicians exploring chronopharmacology applications
- Educators teaching quantitative pharmacology
For the dataset:
Lepesteur T. (2025). Molecular Arrest Framework Research Data Package (v1.1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.17420685
For the manuscript:
Lepesteur T. Molecular Arrest in Biological Regulation: A Unifying Framework for Natural Compounds with Dampening Effects. Manuscript in preparation (2025)
For the code:
Lepesteur T. (2025). molecular-arrest-framework: API calculation tools (v1.1.0). GitHub. https://github.com/Mythmaker28/arrest-molecules
BibTeX:
@dataset{lepesteur2025molecular,
author = {Lepesteur, Tommy},
title = {Molecular Arrest Framework Research Data Package},
year = 2025,
publisher = {Zenodo},
version = {v1.1.0},
doi = {10.5281/zenodo.17420685},
url = {https://doi.org/10.5281/zenodo.17420685}
}Note: This DOI is the concept DOI that always points to the latest version. For citing a specific version, use the version-specific DOI from the Zenodo record.
v1.1.1 (October 2025): ⭐ CURRENT (Reproducibility Patch)
- ✅ Quick check script for instant validation (< 1s)
- ✅ Full CI/CD reproducibility workflow
- ✅ Automated artifact verification
- ✅ SHA256 checksums for all assets
- ✅ DOI Zenodo integrated everywhere
- ✅ 1-click reproducibility guaranteed (< 3 min)
v1.1.0 (October 2025):
- Extended dataset: 6 → 10 compounds (+67%)
- New compounds: Ibogaine, Noribogaine (hybrid arrest), Psilocybin, LSD (oscillation)
- Case studies supplement: 5 detailed case studies spanning arrest-oscillation continuum
- requirements.txt: Explicit Python dependencies with versions
- Updated predictions: 42 → 44 with refined confidence grading
- Enhanced documentation: 95+ literature sources
v1.0 (October 2025):
- Initial release accompanying manuscript submission
- 6 core arrest compounds characterized
- 44 predictions with confidence grading
- Monte Carlo uncertainty quantification implemented
Planned updates:
- v1.2: Add salvinorin A analogs (8 compounds) from Supplementary Table S2
- v2.0: Incorporate Experiment 1 results (salvinorin fMRI data) when available
- v2.1: Incorporate Experiment 2 results (oscillatory cellular lifespan)
- v3.0: Clinical validation from Experiment 3 (TRD trial)
Questions: tommy.lepesteur@hotmail.fr
Issue tracking: https://github.com/Mythmaker28/arrest-molecules/issues
Contributions: Pull requests welcome for novel compound additions (requires literature sources)
Controlled access requests (for synthesis protocols): Email corresponding author with:
- Institutional email (no personal addresses)
- IRB approval documentation (PDF)
- Research protocol summary (1 page)
- Statement of intended use (therapeutic research only)
Response within 7 business days.
Data: Creative Commons Attribution 4.0 International (CC-BY 4.0)
- ✓ Share and adapt freely
- ✓ Provide attribution
- ✓ Indicate if changes made
Code: MIT License
- ✓ Use commercially or non-commercially
- ✓ Modify and distribute
- ✓ Include original license notice
Restrictions: Synthesis protocols for high-potency analogs subject to controlled access (see Data Availability Statement in manuscript Section "Data Availability Statement").
Data compilation supported by independent literature review with quality verification by an external consultant. Database access via freely available public resources (DrugBank, PubChem, ChEMBL).
Dataset expansion (+67%) :
- 4 nouveaux composés ajoutés : Ibogaine, Noribogaine, Psilocybin, LSD
- Dataset : 6 → 10 composés couvrant tout le continuum arrest-oscillation
- Ibogaine/Noribogaine : Arrest hybride DAT/SERT/κ-opioid, mécanisme addiction reset
- Psilocybin/LSD : Oscillation haute entropie (EMC positif), dissolution DMN
Nouveau supplément : Case_Studies_Supplement.md (5 études détaillées) :
- Ibogaine & Noribogaine : Hybrid arrest, GDNF neuroplasticity, addiction reset
- Resveratrol & SIRT1 : Minimal arrest (témoin négatif), échec seuil
- Fasting & Breathing : Natural oscillators, physiological arrest principles
- Psilocybin & LSD : High-entropy oscillation, DMN connectivity, TRD applications
- AI Memory Extension : Dropout/consolidation parallels, computational arrest
Documentation améliorée :
requirements.txtcréé avec versions exactes (numpy 1.24.3, pandas 2.0.3, etc.)- Références bibliographiques : 85 → 95+ sources
- Prédictions : 42 → 44 (ajout métabolites psychédéliques)
Statistiques mises à jour dans README :
- Compound_Properties_Database.csv : 10 lignes, 36 colonnes
- Literature sources : 95+ PMIDs
- Case studies : 5 (vs 0 précédemment)
Harmonisation prédictions (42→44) :
- Nombre de prédictions corrigé dans v6.txt pour correspondre au CSV
- Statistiques de confiance recalculées : High 18/44 (41%), Moderate 13/44 (30%), Low 13/44 (30%)
Fichiers manquants créés (5) :
Experimental_Protocols_Summary.csv,R_Code_Figures_S2.R,Data_Dictionary.mdLiterature_Search_Strategy.md,API_Calculations_Full.xlsx
Figures brouillons créés (3) :
Figure_S1_Molecular_Structures_draft.png,Figure_S2_Oscillatory_Advantage_draft.png/tiffFigure_S3_API_Flowchart_draft.png
Améliorations code :
- Option
--random-seedajoutée au script Python (défaut 42 reproductible)
2025-10-21: Dataset created, v1.0 submitted with manuscript