Skip to content

Mukeshthenraj/Fraud-Detection-Model

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🕵️‍♂️ Fraud Detection Model

Python License: MIT Status

This project uses machine learning to detect fraud in a labeled dataset. It covers data preprocessing, model training, evaluation, and visualization of fraud prediction.


📂 Project Structure

Fraud-Detection-Model/
├── data/
│   └── fraud_data.csv              # Dataset (CSV file)
├── images/
│   └── gridsearch_heatmap.png     # Heatmap of hyperparameter tuning
├── notebooks/
│   └── fraud_assignment.ipynb     # Jupyter notebook (main assignment)
├── fraud_assignment.py            # Converted Python script version
├── requirements.txt               # Project dependencies
├── README.md                      # Project overview (this file)
└── LICENSE                        # MIT License

📊 Dataset

The dataset (fraud_data.csv) contains observations labeled as fraudulent or not. The goal is to predict fraud using classification models.


🌟 Features

  • Load and explore the dataset
  • Train/test split
  • Use of DummyClassifier as baseline
  • Train classifiers like:
    • Logistic Regression
    • Support Vector Machines
    • Decision Trees
  • Evaluate using:
    • Accuracy
    • Recall
    • Precision
    • Confusion Matrix
  • Visualization using seaborn/matplotlib
  • GridSearchCV for hyperparameter tuning

🛠️ Installation

Install dependencies:

pip install -r requirements.txt

Run the notebook:

jupyter notebook notebooks/fraud_assignment.py

Or run the Python script in PyCharm or terminal:

python fraud_assignment.py

📊 Sample Visuals

🔥 Grid Search Heatmap

Grid Search Heatmap


📌 Requirements

- Python 3.7+
- scikit-learn
- pandas
- numpy
- matplotlib
- seaborn

📄 License

This project is licensed under the MIT License.


👤 Author

Mukesh Thenraj
📧 mukeshthenraj@gmail.com

About

Logistic Regression, Grid Search, and ROC-PR curve evaluation on fraud detection dataset

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages