This project applies the architecture of the Brownian Bridge Diffusion Model (BBDM) in cross-domain image-to-image translation on the CelebAMask-HQ Dataset. The diffusion process is performed in the latent space of the VQGAN. This work extends the research presented in this paper by adding various commands, training on the CelebAMask-HQ Dataset, and incorporating a visualization demo.
To train the model, use the following command:
python main.py --config configs/CelebAMaskHQ-f16.yaml --train --sample_at_start --save_top --gpu_ids 0 --resume_model CelebAMaskHQ-f16.pth
To sample on the test dataset, use:
python main.py --config configs/CelebAMaskHQ-f16.yaml --sample_to_eval --gpu_ids 0 --resume_model CelebAMaskHQ-f16.pth
To test the model on a single image, use:
python main.py --config configs/CelebAMaskHQ-f16.yaml --test --gpu_ids 0 --resume_model CelebAMaskHQ-f16.pth -i "path/to/input/image" -o "output/path"
To load the user interface, use:
python main.py --config configs/CelebAMaskHQ-f16.yaml --ui --gpu_ids 0 --resume_model CelebAMaskHQ-f16.pth
We extend our gratitude to the authors of the original paper for their foundational work.