Skip to content

MoinDalvs/Simple_Linear_regression_2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 

Repository files navigation

Simple_Linear_regression_2

Building a prediction model for Salary hike

Building a simple linear regression model by performing EDA and do necessary transformations and select the best model using R or Python.

Step 1 Importing Data

Step 2 Performing EDA On Data

a.) Checking Datatype

b.) Checking for Null Values

c.) Checking for Duplicate Values

Step 3 Plotting the data to check for outliers

Step 4 Checking the Correlation between variables

Step 5 Checking for Homoscedasticity or Hetroscedasticity

Step 6 Feature Engineering

a.) Trying different transformation of data to estimate normal distribution and to remove any skewness

Step 7 Fitting a Linear Regression Model

a.) Using Ordinary least squares (OLS) regression

b.) Square Root transformation on data

c.) Cube Root transformation on Data

d.) Log transformation on Data

Step 8 Residual Analysis

a.) Test for Normality of Residuals (Q-Q Plot)

b.) Residual Plot to check Homoscedasticity or Hetroscedasticity

Step 9 Model Validation

a.) Comparing different models with respect to their Root Mean Squared Errors

Step 10 Predicting values from Model with Log Transformation on the Data

Releases

No releases published

Packages

No packages published