Skip to content

A theoretical framework for constructing adaptive, hierarchical layers of knowledge processing in AI. This model enables dynamic restructuring of knowledge systems, supporting scalable learning and meta-reasoning. AIにおける知識処理を階層的かつ適応的に構築する理論モデル。知識体系の動的再構成を可能にし、スケーラブルな学習とメタ認知的推論を支援する。

License

Notifications You must be signed in to change notification settings

Mk9207/Adaptive-Knowledge-Layering-Model-

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

Adaptive Knowledge Layering Model

This repository presents the Adaptive Knowledge Layering Model (AKLM), a framework for structuring multi-dimensional knowledge in progressively complex layers. It aims to support AI learning systems, educational platforms, and intelligent data organization.

Overview

  • Introduces an architecture for adaptive knowledge stratification.
  • Defines mechanisms for knowledge reinforcement and contextual escalation.
  • Explores applications in curriculum design, AI self-learning, and real-time decision support.

本リポジトリは「適応型知識階層化モデル(AKLM)」を提案します。これは、知識を適応的に階層化し、多次元的に構造化することで、学習支援や知能的データ整理を実現する枠組みです。

内容

  • 知識階層の構築と強化プロセスの定義
  • コンテキストに応じた動的層移動と学習反映
  • 応用領域:教育AI、意思決定支援、知識ベースシステム

About

A theoretical framework for constructing adaptive, hierarchical layers of knowledge processing in AI. This model enables dynamic restructuring of knowledge systems, supporting scalable learning and meta-reasoning. AIにおける知識処理を階層的かつ適応的に構築する理論モデル。知識体系の動的再構成を可能にし、スケーラブルな学習とメタ認知的推論を支援する。

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published