Skip to content

MetaGLM/zhipuai-sdk-python-v4

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

ZhipuAI Open Platform Python SDK

PyPI version License: MIT Python

δΈ­ζ–‡ζ–‡ζ‘£ | English

The official Python SDK for ZhipuAI's large model open interface, making it easier for developers to call ZhipuAI's open APIs.

✨ Features

  • Type Safety: Complete type annotations for all interfaces
  • Easy Integration: Simple initialization and intuitive method calls
  • High Performance: Built-in connection pooling and request optimization
  • Secure: Automatic token caching and secure API key management
  • Lightweight: Minimal dependencies with efficient resource usage
  • Streaming Support: Real-time streaming responses for chat completions

πŸ“¦ Installation

Requirements

  • Python: 3.9+
  • Package Manager: pip

Install via pip

pip install zhipuai

Core Dependencies

Package Version Purpose
httpx >=0.23.0 HTTP client for API requests
pydantic >=1.9.0,<3.0.0 Data validation and serialization
typing-extensions >=4.0.0 Enhanced type hints support

πŸš€ Quick Start

Basic Usage

from zhipuai import ZhipuAI

# Initialize client
client = ZhipuAI(api_key="your-api-key")

# Create chat completion
response = client.chat.completions.create(
    model="glm-4",
    messages=[
        {"role": "user", "content": "Hello, ZhipuAI!"}
    ]
)
print(response.choices[0].message.content)

Client Configuration

Environment Variables

export ZHIPUAI_API_KEY="your-api-key"
export ZHIPUAI_BASE_URL="https://open.bigmodel.cn/api/paas/v4/"  # Optional

Code Configuration

from zhipuai import ZhipuAI

client = ZhipuAI(
    api_key="your-api-key",
    base_url="https://open.bigmodel.cn/api/paas/v4/"  # Optional
)

Advanced Configuration

Customize client behavior with additional parameters:

from zhipuai import ZhipuAI
import httpx

client = ZhipuAI(
    api_key="your-api-key",
    timeout=httpx.Timeout(timeout=300.0, connect=8.0),  # Request timeout
    max_retries=3,  # Retry attempts
    base_url="https://open.bigmodel.cn/api/paas/v4/"  # Custom API endpoint
)

πŸ“– Usage Examples

Basic Chat

from zhipuai import ZhipuAI

client = ZhipuAI(api_key="your-api-key")  # Uses environment variable ZHIPUAI_API_KEY
response = client.chat.completions.create(
    model="glm-4",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "What is artificial intelligence?"}
    ],
    tools=[
        {
            "type": "web_search",
            "web_search": {
                "search_query": "Search the Zhipu",
                "search_result": True,
            }
        }
    ],
    extra_body={"temperature": 0.5, "max_tokens": 50}
)
print(response)

Streaming Chat

from zhipuai import ZhipuAI

client = ZhipuAI(api_key="your-api-key")
response = client.chat.completions.create(
    model="glm-4",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Tell me a story about AI."}
    ],
    stream=True
)

for chunk in response:
    if chunk.choices[0].delta.content:
        print(chunk.choices[0].delta)

Multimodal Chat

import base64
from zhipuai import ZhipuAI

def encode_image(image_path):
    """Encode image to base64 format"""
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')

client = ZhipuAI(api_key="your-api-key")
base64_image = encode_image("path/to/your/image.jpg")

response = client.chat.completions.create(
    model="glm-4v",
    extra_body={"temperature": 0.5, "max_tokens": 50},
    messages=[
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "What's in this image?"
                },
                {
                    "type": "image_url",
                    "image_url": {
                        "url": f"data:image/jpeg;base64,{base64_image}"
                    }
                }
            ]
        }
    ]
)
print(response)

Character Role-Playing

from zhipuai import ZhipuAI

client = ZhipuAI(api_key="your-api-key")
response = client.chat.completions.create(
    model="charglm-3",
    messages=[
        {
            "role": "user",
            "content": "Hello, how are you doing lately?"
        }
    ],
    meta={
        "user_info": "I am a film director who specializes in music-themed movies.",
        "bot_info": "You are a popular domestic female singer and actress with outstanding musical talent.",
        "bot_name": "Xiaoya",
        "user_name": "Director"
    }
)
print(response)

Assistant Conversation

from zhipuai import ZhipuAI

client = ZhipuAI(api_key="your-api-key")
response = client.assistant.conversation(
    assistant_id="your_assistant_id", # You can use 65940acff94777010aa6b796 for testing
    model="glm-4-assistant",
    messages=[
        {
            "role": "user",
            "content": [{
                "type": "text",
                "text": "Help me search for the latest ZhipuAI product information"
            }]
        }
    ],
    stream=True,
    attachments=None,
    metadata=None,
    request_id="request_1790291013237211136",
    user_id="12345678"
)

for chunk in response:
    print(chunk)

Video Generation

from zhipuai import ZhipuAI

client = ZhipuAI(api_key="your-api-key")
response = client.videos.generations(
    model="cogvideox-2",
    prompt="A beautiful sunset beach scene",
    quality="quality",          # Output mode: use "quality" for higher quality, "speed" for faster generation
    with_audio=True,            # Generate video with background audio
    size="1920x1080",           # Video resolution (up to 4K, e.g. "3840x2160")
    fps=30,                     # Frames per second (choose 30 fps or 60 fps)
    user_id="user_12345"
)

# Generation may take some time
result = client.videos.retrieve_videos_result(id=response.id)
print(result)

🚨 Error Handling

The SDK provides comprehensive error handling:

from zhipuai import ZhipuAI
import zhipuai

client = ZhipuAI()

try:
    response = client.chat.completions.create(
        model="glm-4",
        messages=[
            {"role": "user", "content": "Hello, ZhipuAI!"}
        ]
    )
    print(response.choices[0].message.content)
    
except zhipuai.APIStatusError as err:
    print(f"API Status Error: {err}")
except zhipuai.APITimeoutError as err:
    print(f"Request Timeout: {err}")
except Exception as err:
    print(f"Other Error: {err}")

Error Codes

Status Code Error Type Description
400 APIRequestFailedError Invalid request parameters
401 APIAuthenticationError Authentication failed
429 APIReachLimitError Rate limit exceeded
500 APIInternalError Internal server error
503 APIServerFlowExceedError Server overloaded
N/A APIStatusError General API error

πŸ“ˆ Version Updates

For detailed version history and update information, please see Release-Note.md.

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

🀝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

πŸ“ž Support

For questions and technical support, please visit ZhipuAI Open Platform or check our documentation.

About

Python SDK for ZhiPu AI

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Contributors 11