IonoBench: Evaluating Spatiotemporal Models for Ionospheric Forecasting under Solar-Balanced and Storm-Aware Conditions
Published in Remote Sensing (MDPI)
This project is a benchmark framework for evaluating deep spatiotemporal models on Global Ionospheric Map (GIM) forecasting. The framework provides standardized datasets, evaluation protocols, pretrained models, and configuration-based experimentation.
Model | RMSE (↓) | R² (↑) | SSIM (↑) |
---|---|---|---|
SimVPv2 | 2.25 ± 1.35 | 0.962 ± 0.015 | 0.969 ± 0.020 |
DCNN121 | 2.62 ± 1.66 | 0.950 ± 0.023 | 0.963 ± 0.025 |
SwinLSTM | 2.66 ± 1.49 | 0.946 ± 0.020 | 0.960 ± 0.023 |
IRI 2020 | 6.39 ± 4.53 | 0.720 ± 0.109 | 0.852 ± 0.043 |
Click Open in Colab to test without local setup.
- Supports multichannel spatiotemporal models for multistep 24-hour input → 24-hour output setup
- Stratified and chronological datasets (Preprocessed GIMs and auxiliary parameters)
- Model registry and configuration system
- Pretrained model download via Hugging Face
- Solar-balanced and storm-aware evaluation experiments
- Tutorials for Colab and local setups.
Component | Status |
---|---|
HF model & data access | Complete |
Model/config registry | Complete |
Evaluation pipeline | Complete |
Visualization tools | Complete |
CLI support | In Progress |
Training tutorials | Planned |
Contributor guide | Planned |
# Clone repository
git clone https://github.com/Mert-chan/IonoBench.git
# Change your directory
cd IonoBench
# Create environment
conda create -n ionobench python=3.11 -y
conda activate ionobench
# Install dependencies
pip install -r requirements.txt
Tested on: Python 3.11.13 · PyTorch 2.5.1 · CUDA 12.4
The environment usestorch==2.5.1
, which requires a compatible CUDA build.
PyTorch provides separate wheels for each CUDA version (e.g.,+cu118
,+cu121
,+cu124
).
Ensure your NVIDIA driver supports the CUDA version used in the installed wheel.
If you use IonoBench in your research, please cite:
Turkmen, M.C.; Lee, Y.H.; Tan, E.L.
IonoBench: Evaluating Spatiotemporal Models for Ionospheric Forecasting Under Solar-Balanced and Storm-Aware Conditions.
Remote Sensing, 2025, 17(15), 2557.
https://doi.org/10.3390/rs17152557
BibTeX:
@article{Ionobench2025,
title = {IonoBench: Evaluating Spatiotemporal Models for Ionospheric Forecasting under Solar-Balanced and Storm-Aware Conditions},
author = {Turkmen, M.C.; Lee, Y.H.; Tan, E.L.},
journal = {Remote Sensing},
year = {2025},
volume = {17},
number = {15},
pages = {2557},
doi = {10.3390/rs17152557}
}