This repository contains a demo implementation of our ProCare.
Please note that if the local pytorch contains the cpu version, it may cause an error to be reported, which is a library issue
-
Pytorch 1.12.1
-
Python 3.7.15
-
torch-scatter: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.12.1+cu102.html
-
torch-sparse: pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.12.1+cu102.html
-
torch-geometric: pip install torch-geometric
-
torchdiffeq: pip install torchdiffeq
We provide one implementation on MIMIC-III dataset.
binary_train_codes_x.pkl
train set
binary_test_codes_x.pkl
test set
train_codes_y.npy
train label
test_codes_y.npy
test label
train_visit_lens.npy
the number of visits per patient in train set
test_visit_lens.npy
the number of visits per patient in test set
code_levels.npy
ICD-9 disease code tree structure
patient_time_duration_encoded.pkl
timestamp of all patient visits
sum_TE2.0.pkl
the severity-driven time embedding
train_pids.npy
the mapping of patient's pids to idx in train set
test_pids.npy
the mapping of patient's pids to idx in test set
The implementation of model(ProCare.py
);
python ProCare.py