This repository contains a deep learning-powered web application for classifying brain tumors using MRI images. The system uses Transfer Learning with VGG16, modular ML pipelines, and Flask for deployment. Project pipelines are managed and version-controlled using DVC (Data Version Control).
- VGG16 Transfer Learning for brain tumor classification
- Modular architecture: ingestion, training, evaluation, prediction
- Flask web interface for real-time image classification
- DVC-integrated data and model versioning
- Conda-based environment setup
├── artifacts/ # Stored artifacts (e.g., trained models)
├── config/ # Configuration files
├── logs/ # Logging info
├── research/ # Notebooks and experiments
├── src/ # Core package source code
├── templates/ # HTML templates for Flask app
├── .dvc/ # DVC configuration
├── app.py # Flask application
├── main.py # Pipeline execution script
├── params.yaml # Training/evaluation parameters
├── dvc.yaml # DVC pipeline file
├── requirement.txt # Required Python packages
├── README.md # Project documentation
└── setup.py # Package setup
conda create -n tumor-classifier python=3.10 -y
conda activate tumor-classifier
pip install -r requirement.txt
dvc init
dvc repro
python app.py





Mamoona Ramzan (Software Engineering Student at NUST)