2D Poisson,
Smoother | Iterations | Matvecs | Smoothers | Initial Residual | Final Relative Residual |
---|---|---|---|---|---|
WASM,(7,1), |
54 | 269 | 108 | 6915.9255 | 7.2393e-11 |
Cheby-WASM(1),(7,1) | 54 | 269 | 108 | 6915.9255 | 7.2393e-11 |
Cheby-WASM(2),(7,1) | 31 | 216 | 124 | 6915.9255 | 6.1281e-11 |
Cheby-WASM(3),(7,1) | 23 | 206 | 138 | 6915.9255 | 6.5132e-11 |
Cheby-WASM(4),(7,1) | 20 | 219 | 160 | 6915.9255 | 2.7355e-11 |
Cheby-WASM(5),(7,1) | 18 | 233 | 180 | 6915.9255 | 2.9309e-11 |
Cheby-WASM(6),(7,1) | 16 | 239 | 192 | 6915.9255 | 3.8236e-11 |
Cheby-WASM(7),(7,1) | 15 | 254 | 210 | 6915.9255 | 3.1146e-11 |
Smoother | Iterations | Matvecs | Smoothers | Initial Residual | Final Relative Residual |
---|---|---|---|---|---|
WASM,(7,1), |
54 | 269 | 108 | 6915.9255 | 7.2393e-11 |
Opt. 4th Kind Cheby-WASM(1),(7,1) | 59 | 294 | 118 | 6915.9255 | 6.0384e-11 |
Opt. 4th Kind Cheby-WASM(2),(7,1) | 33 | 230 | 132 | 6915.9255 | 8.8919e-11 |
Opt. 4th Kind Cheby-WASM(3),(7,1) | 23 | 206 | 138 | 6915.9255 | 6.5069e-11 |
Opt. 4th Kind Cheby-WASM(4),(7,1) | 18 | 197 | 144 | 6915.9255 | 6.4798e-11 |
Opt. 4th Kind Cheby-WASM(5),(7,1) | 15 | 194 | 150 | 6915.9255 | 2.0337e-11 |
Opt. 4th Kind Cheby-WASM(6),(7,1) | 13 | 194 | 156 | 6915.9255 | 1.4384e-11 |
Opt. 4th Kind Cheby-WASM(7),(7,1) | 11 | 186 | 154 | 6915.9255 | 2.2537e-11 |
Smoother | Iterations | Matvecs | Smoothers | Initial Residual | Final Relative Residual |
---|---|---|---|---|---|
Jacobi,(7,1), |
297 | 1484 | 594 | 6915.9255 | 9.803e-11 |
Cheby-Jacobi(1),(7,1) | 297 | 1484 | 594 | 6915.9255 | 9.803e-11 |
Cheby-Jacobi(2),(7,1) | 170 | 1189 | 680 | 6915.9255 | 9.5788e-11 |
Cheby-Jacobi(3),(7,1) | 130 | 1169 | 780 | 6915.9255 | 8.9169e-11 |
Cheby-Jacobi(4),(7,1) | 110 | 1209 | 880 | 6915.9255 | 8.0867e-11 |
Cheby-Jacobi(5),(7,1) | 98 | 1273 | 980 | 6915.9255 | 9.4575e-11 |
Cheby-Jacobi(6),(7,1) | 89 | 1334 | 1068 | 6915.9255 | 7.3354e-11 |
Cheby-Jacobi(7),(7,1) | 82 | 1393 | 1148 | 6915.9255 | 7.2088e-11 |
Smoother | Iterations | Matvecs | Smoothers | Initial Residual | Final Relative Residual |
---|---|---|---|---|---|
Jacobi,(7,1), |
297 | 1484 | 594 | 6915.9255 | 9.803e-11 |
Opt. 4th Kind Cheby-Jacobi(1),(7,1) | 328 | 1639 | 656 | 6915.9255 | 9.7937e-11 |
Opt. 4th Kind Cheby-Jacobi(2),(7,1) | 182 | 1273 | 728 | 6915.9255 | 9.8686e-11 |
Opt. 4th Kind Cheby-Jacobi(3),(7,1) | 129 | 1160 | 774 | 6915.9255 | 9.3539e-11 |
Opt. 4th Kind Cheby-Jacobi(4),(7,1) | 100 | 1099 | 800 | 6915.9255 | 7.8685e-11 |
Opt. 4th Kind Cheby-Jacobi(5),(7,1) | 83 | 1078 | 830 | 6915.9255 | 7.728e-11 |
Opt. 4th Kind Cheby-Jacobi(6),(7,1) | 72 | 1079 | 864 | 6915.9255 | 7.583e-11 |
Opt. 4th Kind Cheby-Jacobi(7),(7,1) | 63 | 1070 | 882 | 6915.9255 | 6.9955e-11 |
Solver is GMRES(15), A-conjugate residual projection is used with
Smoother | Avg. Iterations, 1st Kind | Avg. Iterations, Opt. 4th Kind | Ratio |
---|---|---|---|
Cheb-ASM(1),(7,3,1) | 42.499$\dagger$ | 45.048$\dagger$ | 0.943 |
Cheb-ASM(2),(7,3,1) | 29.0455 | 27.4085 | 1.06 |
Cheb-ASM(3),(7,3,1) | 24.956 | 20.6125 | 1.21 |
Cheb-ASM(4),(7,3,1) | TBD | TBD | TBD |
Avg. iterations over 2000 steps, 67 pebble case
Asymptotically, expect 18% improvement as
Pros:
- weights can be pre-tabulated, and only depend on k
- minimal change to existing implementation
- no additional matvecs, etc. -- can directly compare like-with-like
- good for relatively large k (k >= 2?)
- might be able to choose a more aggressive coarsening strategy with a heavier weight smoother(?) Cons:
- may be relatively poor for small k
We could probably ammend the issue for small k by choosing the method with the lowest iteration count during the first solve.
Experimental, not production ready nekRS implementation: https://github.com/MalachiTimothyPhillips/nekRS/tree/optimal-chebyshev-polynomials Code for generating weights (with fix for W), stolen from ArXiv paper: https://github.com/MalachiTimothyPhillips/optimal-fourth-kind-chebyshev-weights
Next steps?
AMG Solver integration: