Skip to content

Mai3Prabhu/Algerian-Forest-Fires-Project

Repository files navigation

πŸ“Š Ridge, Lasso, and ElasticNet Regression

This project demonstrates how to use regularized linear regression techniques β€” Ridge, Lasso, and ElasticNet β€” to build more robust machine learning models in Python. These methods help prevent overfitting and handle multicollinearity in datasets.


πŸ“Œ Project Overview

Regularized regression is an extension of linear regression that introduces a penalty term to shrink model coefficients. This improves generalization and model performance.

This notebook walks you through:

  • Understanding Ridge, Lasso, and ElasticNet regression
  • Implementing models using scikit-learn
  • Comparing model performance
  • Visualizing results
  • Evaluating model metrics

🧠 Concepts Covered

  • Linear Regression refresher
  • Ridge Regression (L2 penalty)
  • Lasso Regression (L1 penalty)
  • ElasticNet Regression (L1 + L2 combination)
  • Feature selection with Lasso
  • Model evaluation (MSE, RΒ²)
  • Cross-validation

πŸ› οΈ Tools & Libraries

Tool/Library Purpose
Python Core programming language
Jupyter Notebook Interactive coding environment
NumPy Numerical operations
pandas Data handling and manipulation
matplotlib Data visualization
seaborn Statistical visualization
scikit-learn Machine learning models & utilities

πŸ“ Project Structure

File/Folder Name Description
Ridge_Lasso_ElasticNet.ipynb Main notebook with model implementation
README.md Project documentation (this file)
Algerian_forest_fires_cleaned_dataset.csv / Algerian_forest_fires_dataset_UPDATE.csv Dataset used for model training/testing

πŸš€ How to Run

  1. Clone the Repository

    git clone https://github.com/YourUsername/Ridge-Lasso-ElasticNet.git
    cd Ridge-Lasso-ElasticNet
    
  2. Install dependencies (optional)

    pip install numpy pandas matplotlib seaborn scikit-learn
    
  3. Launch Jupyter Notebook

    jupyter notebook
    
  4. Open ipynb files and run the cells.

About

Ridge, Lasso and ElasticNet Regression using Algerian forest fire dataset.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published