Skip to content

MLDataAnalytics/dFCExperts

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

dFCExperts

This repository is the official implementation of paper "dFCExperts: Learning Dynamic Functional Connectivity Patterns with Modularity and State Experts".

Dataset

The fMRI data used for the experiments of the paper should be downloaded from the Human Connectome Project and ABCD_ABCC.

Example structure of the data folder

data (specified by option --sourcedir)
├─── hcp1200
│    ├─── label.csv
│    ├─── hcp_rest_datasplit_5folds.pth
│    ├─── hcp_rfMRI_REST1_LR_fc_Schaefer2018_400Parcels.pt
│    └─── hcp_rfMRI_REST1_LR_tc_Schaefer2018_400Parcels.pt
└───  abcd_abcc
     ├─── 6195_timeseries-?x352.pth
     ├─── datasplit_5folds.pth
     └─── label.csv

Requirements

To install requirements:

pip install -r requirements.txt

Training

To train the model(s) in the paper, run this command:

python3 main.py --exp_name 'hcp_c' \
                --dataset 'hcp-dyn' \
                --targetdir './result' \
                --target_feature 'Gender' \
                --gin_type 'moe_gin' \
                --num_gin_experts 5 \
                --num_states 7 \
                --state_ex_loss_coeff 10 \
                --orthogonal \
                --freeze_center \
                --project_assignment \
                --fc_hidden 256 \
                --num_epochs 30 \
                --minibatch_size 8 \
                --train \
                --validate \
                --test \
                --test_model_name 'model_val_acc'

About

Learning Dynamic Functional Connectivity Patterns with Modularity and State Experts

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%