This project implements a YouTube Video Transcription and Summarization application using Google Gemini Pro. The system extracts speech from YouTube videos, transcribes the content, and generates concise summaries using an LLM-powered approach.
- Extract audio and transcribe speech from YouTube videos
- Generate detailed and concise summaries using Google Gemini Pro
- Support for multiple languages and auto-detection
- Keyword extraction for topic analysis
- API support for easy integration
- User-friendly interface for quick video analysis
- Google Gemini Pro (LLM for summarization and transcription)
- Python (Backend processing)
- FastAPI / Flask (API implementation)
- yt-dlp (YouTube video/audio extraction)
- Whisper AI (For high-accuracy speech-to-text conversion)
- LangChain (LLM-powered text processing)
- Streamlit / ReactJS (Frontend for user interaction)
Ensure you have the following installed:
- Python 3.8+
- pip
- FFmpeg (for audio processing)
- Clone the repository:
git clone https://github.com/Lucky-akash321/Youtube-Video-Transcribe-Summarizer-LLM-APP-with-Google-Gemini-Pro- cd youtube-transcribe-gemini
- Create a virtual environment and activate it:
python -m venv venv source venv/bin/activate # On Windows use `venv\Scripts\activate`
- Install dependencies:
pip install -r requirements.txt
- Set up Google Gemini Pro API access (update
config.py
with API keys).
- Start the API server:
python app.py
- Access the frontend:
streamlit run frontend.py
- Provide a YouTube video URL and get a transcription and summary.
import requests
url = "http://localhost:8000/summarize"
data = {
"video_url": "https://www.youtube.com/watch?v=example"
}
response = requests.post(url, json=data)
print(response.json())
- Multi-speaker identification for better transcription clarity
- Sentiment analysis of the video content
- Export summaries to PDF or Word formats
This project is licensed under the MIT License.