This project performs inference over the DrawBench prompt benchmark using recent various image generation models. It enables automated image generation, logging, and grid visualization of outputs by prompt category.
- 🔢 Inference using multiple SANA models (
1.6B
,0.6B
,4.8B
, etc.) - 📊 Prompt categorization and controlled sampling
- 🧱 Grid visualization per category
- ✅ Supports all DrawBench categories or filtered categories
- 🔁 Reproducible via manual seed setting
- 🧩 Modular and extensible pipeline
- ⚡ Powered by uv for ultra-fast Python dependency management
git clone https://github.com/Longcat2957/DrawBench-Glance-More
cd DrawBench-Glance-More
uv sync
This will automatically install all required packages listed in pyproject.toml
.
.
├── prompts/
│ └── DrawBench.csv # Prompt file grouped by categories
├── outputs/
│ └── {model_name}/{category}/ # Generated images
│ └── {model_name}/{category}_grid.png
├── models/
│ └── sana.py # SANA model loading logic
├── utils/
│ ├── logger.py # Logging configuration
│ ├── misc.py # Utility: device, dtype
│ └── grid.py # Grid image generation
└── main.py # Entry-point for prompt-based inference
uv run python main.py
uv run python main.py --all-categories --num 100
Update --repo-id
to try different preconfigured SANA models:
Model Repo ID | Inference Steps | Guidance Scale |
---|---|---|
Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers |
2 | — |
Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers |
2 | — |
Efficient-Large-Model/SANA1.5_4.8B_1024px_diffusers |
20 | 4.5 |
Efficient-Large-Model/SANA1.5_1.6B_1024px_diffusers |
20 | 4.5 |
Each category generates:
- Individual images named with sanitized prompt text and seed
- A grid image with all prompts from the category (unless
--no_grid
is set)
📁 Example:
outputs/
└── Sana_Sprint_1.6B/
├── Colors/
│ ├── red_frog_on_leaf_seed42.png
│ ├── ...
└── Colors_grid.png
DrawBench.csv
should follow:
Category,Prompt
Colors,A red frog on a green leaf
Colors,A blue elephant flying
Positional,A dog under the table
...
You may replace or expand this file for your own benchmarks.
We welcome contributions to:
- Extend model support
- Add prompt sets (e.g., HRS, TIFA, etc.)
- Improve UI or grid rendering
- Optimize inference pipeline
- Fork this repository
- Create a feature branch
- Open a pull request with clear description and sample output if applicable