I refered this article: https://medium.com/aingineer/a-comprehensive-guide-to-implementing-modular-rag-for-scalable-ai-systems-3fb47c46dc8e
modular_rag/
├── src/
│ ├── retrieval/ # Document retrieval module
│ ├── reasoning/ # Reasoning module
│ ├── generation/ # Response generation module
│ ├── pipeline/ # Pipeline orchestration
│ └── utils/ # Utility functions
├── data/
│ ├── documents/ # Input documents
│ └── vector_store/ # Vector store for document retrieval
├── config/ # Configuration files
├── tests/ # Test files
├── scripts/ # Utility scripts
├── Dockerfile # Docker configuration
├── requirements.txt # Python dependencies
└── README.md # Project documentation
A scalable implementation of Retrieval-Augmented Generation (RAG) based on modular architecture.
- Install dependencies:
pip install -r requirements.txt
- Run the pipeline:
python scripts/run_pipeline.py
src/
: Core modules (retrieval, reasoning, generation, pipeline)data/
: Documents and vector storeconfig/
: Configuration filestests/
: Unit testsscripts/
: Utility scripts