./run-docker.sh \
--model-url <MODEL_URL> \
--model-name <MODEL_NAME> \
--model-api-key <MODEL_API_KEY>The benchmark results will be stored in the ./benchmark_root directory relative to where you run the Docker command.
Examples
# run against liquid labs
./run-docker.sh \
--model-url https://inference-1.liquid.ai \
--model-name lfm-40b \
--model-api-key <MODEL_API_KEY>
# run on-prem
./run-docker.sh \
--model-url http://localhost:8000 \
--model-name lfm-40b \
--model-api-key <MODEL_API_KEY>Important
The script uses Python requests to call the /tokenize endpoint. It is important to include http:// or https:// in the model URL argument, especially when the URL is localhost. Otherwise, requests will throw the no connection adapters were found error.
- Start with a new conda environment with
python=3.11:
conda create -n ruler python=3.11
conda activate ruler- Get the model provider URL and API key.
To run against Liquid labs, get API key here.
- Run
./run-local.sh --model-url <MODEL_URL> --model-name <MODEL_NAME> --model-api-key <LIQUID_API_KEY>to install necessary packages and run RULER.
Examples
# run against liquid labs
./run-local.sh \
--model-url https://inference-1.liquid.ai \
--model-name lfm-40b \
--model-api-key <MODEL_API_KEY>
# run on-prem
./run-local.sh \
--model-url http://localhost:8000 \
--model-name lfm-40b \
--model-api-key <MODEL_API_KEY>The benchmark results will be stored in the ./benchmark_root directory under the project root.
These parameters are available for both the run-docker.sh and run-local.sh scripts.
| Parameter | Required | Description | Default |
|---|---|---|---|
--model-url <SERVER_URL> |
Yes | Inference server URL base. | |
--model-name <MODEL_NAME> |
Yes | Model ID. | |
--model-api-key <API_KEY> |
Yes | Inference server API key. | |
--skip-install |
No | Skip dependency installation. Useful for re-running the script. | |
--num-samples <N> |
No | Number of samples to run. | 100 |
--ci |
No | Run in CI mode with as few tests as possible. |
Run the following command to create a symbolic link to the system's libstdc++.so.6 in the conda environment:
ln -sf /usr/lib/x86_64-linux-gnu/libstdc++.so.6 ${CONDA_PREFIX}/lib/libstdc++.so.6The 404 error can be misleading as if the /tokenize endpoint does not exist. However, it is more likely that the deployed model cannot be found. Please ensure that both the deployed model and the evaluation script are using the same model name.
This repository is modified from NVIDIA/RULER.