Jiayang Bai
Letian Huang
Jie Guo*
Wen Gong
Yuanqi Li
Yanwen Guo
Nanjing University
-
Dataset preparation.
-
Release the code.
Please read the README.
Clone the repository and create an anaconda environment:
git clone https://github.com/LeoDarcy/360GS.git --recursive
cd 360GS/submodules/
SET DISTUTILS_USE_SDK=1 # Windows only
conda env create --file environment.yml
conda activate op43dgs
pip install submodules/diff-gaussian-rasterization-panorama
python train.py -s
while withholding a test set for evaluation, use the --eval
flag. This way, you can render training/test sets and produce error metrics as follows:
python train.py -s <path to dataset> --room_id <room_id> --use_layout --use_layout_densify --lambda_dxyz 0.01 --eval
This project is built upon 3DGS. Please follow the license of 3DGS. We thank all the authors for their great work and repos.
If you find this work useful in your research, please cite:
@article{bai2024360,
title={360-GS: Layout-guided Panoramic Gaussian Splatting For Indoor Roaming},
author={Bai, Jiayang and Huang, Letian and Guo, Jie and Gong, Wen and Li, Yuanqi and Guo, Yanwen},
journal={arXiv preprint arXiv:2402.00763},
year={2024}
}
@article{huang2024erroranalysis3dgaussian,
title={On the Error Analysis of 3D Gaussian Splatting and an Optimal Projection Strategy},
author={Letian Huang and Jiayang Bai and Jie Guo and Yuanqi Li and Yanwen Guo},
journal={arXiv preprint arXiv:2402.00752},
year={2024}
}