Skip to content

LennyHuang15/JD-Quantity-Prediction

Repository files navigation

Files

  1. sku_{attr,info,prom,prom_testing,quantile,sales}.csv 赛题所给文件
  2. features[0-9].csv 不用git同步,共1000*6*762个sample,每个39维features和1维label(0-quantity那一列)
  3. stat.csv 均值方差(没用这个)
  4. stdvar.csv 每个(sku,dc)14维,分别为dc全年,dc1-12月,sku全年的stdvar
  5. test.csv 预测结果(可以直接提交)
  6. model.py Machine Learning脚本
  7. processing.py 提特征脚本
  8. test.py 不用理

features

  • sku_id,dc_id,date
  • -x_quantity 第(now-x)天quantity
  • -x_vendibility 第(now-x)vendibility

(共k0天)

  • original_price 原价,当天无记录则为该sku平均原价
  • discount 标价/原价,0.0-1.0,当天无记录则为1
  • prom_sku 有promotion_type的时候该sku销量总和/该sku销量总和,理论上应该>1
  • prom_cate3 有promotion_type的时候该第三类别销量总和/该第三类别销量总和,理论上应该>1
  • k1days-avr-discount 前k1天平均discount
  • k1days-avr-quantity 前k1天平均quantity
  • k2days-avr-discount,k2days-avr-quantity month-avr-quantity-first_cate,second_cate,third_cate,brand_code,sku_id,sku_dc 所属first_cate,second_cate,third_cate,brand_code,sku_id,sku_dc对在该月的平均quantity
  • weekday-avr-quantity-first_cate,second_cate,third_cate,brand_code,sku_id,sku_dc 所属first_cate,second_cate,third_cate,brand_code,sku_id,sku_dc对在星期x的平均quantity

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages