Skip to content

[PLT-1463] Removed ND deserialize from some unit test part 2 #1815

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 17 commits into from
Sep 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
170 changes: 149 additions & 21 deletions libs/labelbox/tests/data/serialization/ndjson/test_metric.py
Original file line number Diff line number Diff line change
@@ -1,38 +1,166 @@
import json

from labelbox.data.annotation_types.data.generic_data_row_data import (
GenericDataRowData,
)
from labelbox.data.annotation_types.metrics.confusion_matrix import (
ConfusionMatrixMetric,
)
from labelbox.data.serialization.ndjson.converter import NDJsonConverter
from labelbox.types import (
Label,
ScalarMetric,
ScalarMetricAggregation,
ConfusionMatrixAggregation,
)


def test_metric():
with open("tests/data/assets/ndjson/metric_import.json", "r") as file:
data = json.load(file)

label_list = list(NDJsonConverter.deserialize(data))
reserialized = list(NDJsonConverter.serialize(label_list))
assert reserialized == data
labels = [
Label(
data=GenericDataRowData(
uid="ckrmdnqj4000007msh9p2a27r",
),
annotations=[
ScalarMetric(
value=0.1,
extra={"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7672"},
aggregation=ScalarMetricAggregation.ARITHMETIC_MEAN,
)
],
)
]

res = list(NDJsonConverter.serialize(labels))
assert res == data


def test_custom_scalar_metric():
with open(
"tests/data/assets/ndjson/custom_scalar_import.json", "r"
) as file:
data = json.load(file)
data = [
{
"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7672",
"dataRow": {"id": "ckrmdnqj4000007msh9p2a27r"},
"metricValue": 0.1,
"metricName": "custom_iou",
"featureName": "sample_class",
"subclassName": "sample_subclass",
"aggregation": "SUM",
},
{
"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7673",
"dataRow": {"id": "ckrmdnqj4000007msh9p2a27r"},
"metricValue": 0.1,
"metricName": "custom_iou",
"featureName": "sample_class",
"aggregation": "SUM",
},
{
"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7674",
"dataRow": {"id": "ckrmdnqj4000007msh9p2a27r"},
"metricValue": {0.1: 0.1, 0.2: 0.5},
"metricName": "custom_iou",
"aggregation": "SUM",
},
]

labels = [
Label(
data=GenericDataRowData(
uid="ckrmdnqj4000007msh9p2a27r",
),
annotations=[
ScalarMetric(
value=0.1,
feature_name="sample_class",
subclass_name="sample_subclass",
extra={"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7672"},
metric_name="custom_iou",
aggregation=ScalarMetricAggregation.SUM,
),
ScalarMetric(
value=0.1,
feature_name="sample_class",
extra={"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7673"},
metric_name="custom_iou",
aggregation=ScalarMetricAggregation.SUM,
),
ScalarMetric(
value={"0.1": 0.1, "0.2": 0.5},
extra={"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7674"},
metric_name="custom_iou",
aggregation=ScalarMetricAggregation.SUM,
),
],
)
]

res = list(NDJsonConverter.serialize(labels))

label_list = list(NDJsonConverter.deserialize(data))
reserialized = list(NDJsonConverter.serialize(label_list))
assert json.dumps(reserialized, sort_keys=True) == json.dumps(
data, sort_keys=True
)
assert res == data


def test_custom_confusion_matrix_metric():
with open(
"tests/data/assets/ndjson/custom_confusion_matrix_import.json", "r"
) as file:
data = json.load(file)
data = [
{
"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7672",
"dataRow": {"id": "ckrmdnqj4000007msh9p2a27r"},
"metricValue": (1, 1, 2, 3),
"metricName": "50%_iou",
"featureName": "sample_class",
"subclassName": "sample_subclass",
"aggregation": "CONFUSION_MATRIX",
},
{
"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7673",
"dataRow": {"id": "ckrmdnqj4000007msh9p2a27r"},
"metricValue": (0, 1, 2, 5),
"metricName": "50%_iou",
"featureName": "sample_class",
"aggregation": "CONFUSION_MATRIX",
},
{
"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7674",
"dataRow": {"id": "ckrmdnqj4000007msh9p2a27r"},
"metricValue": {0.1: (0, 1, 2, 3), 0.2: (5, 3, 4, 3)},
"metricName": "50%_iou",
"aggregation": "CONFUSION_MATRIX",
},
]

labels = [
Label(
data=GenericDataRowData(
uid="ckrmdnqj4000007msh9p2a27r",
),
annotations=[
ConfusionMatrixMetric(
value=(1, 1, 2, 3),
feature_name="sample_class",
subclass_name="sample_subclass",
extra={"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7672"},
metric_name="50%_iou",
aggregation=ConfusionMatrixAggregation.CONFUSION_MATRIX,
),
ConfusionMatrixMetric(
value=(0, 1, 2, 5),
feature_name="sample_class",
extra={"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7673"},
metric_name="50%_iou",
aggregation=ConfusionMatrixAggregation.CONFUSION_MATRIX,
),
ConfusionMatrixMetric(
value={0.1: (0, 1, 2, 3), 0.2: (5, 3, 4, 3)},
extra={"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7674"},
metric_name="50%_iou",
aggregation=ConfusionMatrixAggregation.CONFUSION_MATRIX,
),
],
)
]

res = list(NDJsonConverter.serialize(labels))

label_list = list(NDJsonConverter.deserialize(data))
reserialized = list(NDJsonConverter.serialize(label_list))
assert json.dumps(reserialized, sort_keys=True) == json.dumps(
data, sort_keys=True
)
assert data == res
125 changes: 109 additions & 16 deletions libs/labelbox/tests/data/serialization/ndjson/test_mmc.py
Original file line number Diff line number Diff line change
@@ -1,32 +1,125 @@
import json

from labelbox.data.annotation_types.data.generic_data_row_data import (
GenericDataRowData,
)
import pytest

from labelbox.data.serialization import NDJsonConverter
from labelbox.types import (
Label,
MessageEvaluationTaskAnnotation,
MessageSingleSelectionTask,
MessageMultiSelectionTask,
MessageInfo,
OrderedMessageInfo,
MessageRankingTask,
)


def test_message_task_annotation_serialization():
with open("tests/data/assets/ndjson/mmc_import.json", "r") as file:
data = json.load(file)

deserialized = list(NDJsonConverter.deserialize(data))
reserialized = list(NDJsonConverter.serialize(deserialized))
labels = [
Label(
data=GenericDataRowData(
uid="cnjencjencjfencvj",
),
annotations=[
MessageEvaluationTaskAnnotation(
name="single-selection",
extra={"uuid": "c1be3a57-597e-48cb-8d8d-a852665f9e72"},
value=MessageSingleSelectionTask(
message_id="clxfzocbm00083b6v8vczsept",
model_config_name="GPT 5",
parent_message_id="clxfznjb800073b6v43ppx9ca",
),
)
],
),
Label(
data=GenericDataRowData(
uid="cfcerfvergerfefj",
),
annotations=[
MessageEvaluationTaskAnnotation(
name="multi-selection",
extra={"uuid": "gferf3a57-597e-48cb-8d8d-a8526fefe72"},
value=MessageMultiSelectionTask(
parent_message_id="clxfznjb800073b6v43ppx9ca",
selected_messages=[
MessageInfo(
message_id="clxfzocbm00083b6v8vczsept",
model_config_name="GPT 5",
)
],
),
)
],
),
Label(
data=GenericDataRowData(
uid="cwefgtrgrthveferfferffr",
),
annotations=[
MessageEvaluationTaskAnnotation(
name="ranking",
extra={"uuid": "hybe3a57-5gt7e-48tgrb-8d8d-a852dswqde72"},
value=MessageRankingTask(
parent_message_id="clxfznjb800073b6v43ppx9ca",
ranked_messages=[
OrderedMessageInfo(
message_id="clxfzocbm00083b6v8vczsept",
model_config_name="GPT 4 with temperature 0.7",
order=1,
),
OrderedMessageInfo(
message_id="clxfzocbm00093b6vx4ndisub",
model_config_name="GPT 5",
order=2,
),
],
),
)
],
),
]

assert data == reserialized
res = list(NDJsonConverter.serialize(labels))

assert res == data

def test_mesage_ranking_task_wrong_order_serialization():
with open("tests/data/assets/ndjson/mmc_import.json", "r") as file:
data = json.load(file)

some_ranking_task = next(
task
for task in data
if task["messageEvaluationTask"]["format"] == "message-ranking"
)
some_ranking_task["messageEvaluationTask"]["data"]["rankedMessages"][0][
"order"
] = 3

def test_mesage_ranking_task_wrong_order_serialization():
with pytest.raises(ValueError):
list(NDJsonConverter.deserialize([some_ranking_task]))
(
Label(
data=GenericDataRowData(
uid="cwefgtrgrthveferfferffr",
),
annotations=[
MessageEvaluationTaskAnnotation(
name="ranking",
extra={
"uuid": "hybe3a57-5gt7e-48tgrb-8d8d-a852dswqde72"
},
value=MessageRankingTask(
parent_message_id="clxfznjb800073b6v43ppx9ca",
ranked_messages=[
OrderedMessageInfo(
message_id="clxfzocbm00093b6vx4ndisub",
model_config_name="GPT 5",
order=1,
),
OrderedMessageInfo(
message_id="clxfzocbm00083b6v8vczsept",
model_config_name="GPT 4 with temperature 0.7",
order=1,
),
],
),
)
],
),
)

This file was deleted.

Loading