Skip to content

Kurra-Srinivas/Dogecoin-LSTM-Predictor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

title emoji colorFrom colorTo sdk sdk_version app_file pinned
Dogecoin LSTM Predictor
🐶
yellow
red
streamlit
1.35.0
app.py
false

🐶📈 Dogecoin Price Predictor (LSTM-based)

Get ready to predict Dogecoin prices with the power of LSTM!

Dive into the world of cryptocurrency forecasting with this deep learning project! Using LSTM (Long Short-Term Memory) networks, this app predicts Dogecoin (DOGE) prices by analyzing historical data. Whether you're a crypto enthusiast or a data science learner, this project offers a blend of sequence modeling, time series forecasting, and interactive visualization.

🚀 Project Overview

  • 📊 Input Data: Historical DOGE-USD prices
  • 🤖 Model Type: LSTM Neural Network (with Keras & TensorFlow backend)
  • 🧠 Features: Closing price series (scaled), time-based sequence modeling
  • 🎯 Objective: Predict future closing prices of Dogecoin
  • 📉 Visualizations: Loss curve, actual vs predicted, residual diagnostics, future price projection

📌 Highlights

  • ✅ Built and trained a custom LSTM network on preprocessed crypto time series
  • ✅ Achieved strong performance on test set (R² score, low residuals)
  • ✅ Visualized residual distribution, model diagnostics, and future forecasts
  • ✅ Saved model and scaler for real-time or batch inference
  • ✅ Deployed on Hugging Face using Streamlit

🌐 Live Demo on Huggingface 🤗

🧰 Tech Stack

Tool/Library Purpose
Python (3.12) Core programming language
TensorFlow/Keras LSTM Model Building & Training
Scikit-learn Metrics, preprocessing
Pandas, NumPy Data manipulation
Matplotlib, Seaborn Plotting & visualization
Streamlit Web app deployment
Git/GitHub Version control & collaboration

📂 Project Structure

📁 Dogecoin-LSTM-Predictor/
│
├── DOGE-USD.csv                   # Raw historical Dogecoin data
├── dogecoin_lstm.ipynb           # Main Jupyter Notebook (core logic)
├── lstm_stock_model.keras        # Trained LSTM model (Keras format)
├── scaler.save                   # Saved MinMaxScaler for future inference
│
├── actual_vs_predicted.png       # Visualization of model performance
├── residual_distribution.png     # Histogram + KDE of residuals
├── residual_diagnostics.png      # Residuals vs predicted plot
├── loss_curve.png                # Training loss progression
├── future_price_prediction.png   # Future forecasted prices
│
└── README.md                     # This file ✨

📈 Sample Results

Metric Value
R² Score (Test) ~0.90+
MAE / MSE Low (well-optimized)

🧪 How to Run

# 1. Clone the repo
git clone https://github.com/Kurra-Srinivas/Dogecoin-LSTM-Predictor.git
cd Dogecoin-LSTM-Predictor

# 2. (Optional) Create virtual environment
python -m venv venv
source venv/bin/activate  # or venv\Scripts\activate on Windows

# 3. Install requirements
pip install -r requirements.txt

# 4. Run the Streamlit app
streamlit run app.py

🙋‍♂️ Author

Kurra Srinivas
📧 Email: srinivaskurra886@gmail.com
🔗 LinkedIn: https://www.linkedin.com/in/kurra-srinivas-31727420b/
🐙 GitHub: Kurra-Srinivas

About

A deep learning project using LSTM (Long Short-Term Memory) networks to forecast Dogecoin (DOGE) prices based on historical data.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published