title | emoji | colorFrom | colorTo | sdk | sdk_version | app_file | pinned |
---|---|---|---|---|---|---|---|
Dogecoin LSTM Predictor |
🐶 |
yellow |
red |
streamlit |
1.35.0 |
app.py |
false |
Get ready to predict Dogecoin prices with the power of LSTM!
Dive into the world of cryptocurrency forecasting with this deep learning project! Using LSTM (Long Short-Term Memory) networks, this app predicts Dogecoin (DOGE) prices by analyzing historical data. Whether you're a crypto enthusiast or a data science learner, this project offers a blend of sequence modeling, time series forecasting, and interactive visualization.
- 📊 Input Data: Historical DOGE-USD prices
- 🤖 Model Type: LSTM Neural Network (with Keras & TensorFlow backend)
- 🧠 Features: Closing price series (scaled), time-based sequence modeling
- 🎯 Objective: Predict future closing prices of Dogecoin
- 📉 Visualizations: Loss curve, actual vs predicted, residual diagnostics, future price projection
- ✅ Built and trained a custom LSTM network on preprocessed crypto time series
- ✅ Achieved strong performance on test set (R² score, low residuals)
- ✅ Visualized residual distribution, model diagnostics, and future forecasts
- ✅ Saved model and scaler for real-time or batch inference
- ✅ Deployed on Hugging Face using Streamlit
Tool/Library | Purpose |
---|---|
Python (3.12) | Core programming language |
TensorFlow/Keras | LSTM Model Building & Training |
Scikit-learn | Metrics, preprocessing |
Pandas, NumPy | Data manipulation |
Matplotlib, Seaborn | Plotting & visualization |
Streamlit | Web app deployment |
Git/GitHub | Version control & collaboration |
📁 Dogecoin-LSTM-Predictor/
│
├── DOGE-USD.csv # Raw historical Dogecoin data
├── dogecoin_lstm.ipynb # Main Jupyter Notebook (core logic)
├── lstm_stock_model.keras # Trained LSTM model (Keras format)
├── scaler.save # Saved MinMaxScaler for future inference
│
├── actual_vs_predicted.png # Visualization of model performance
├── residual_distribution.png # Histogram + KDE of residuals
├── residual_diagnostics.png # Residuals vs predicted plot
├── loss_curve.png # Training loss progression
├── future_price_prediction.png # Future forecasted prices
│
└── README.md # This file ✨
Metric | Value |
---|---|
R² Score (Test) | ~0.90+ |
MAE / MSE | Low (well-optimized) |
# 1. Clone the repo
git clone https://github.com/Kurra-Srinivas/Dogecoin-LSTM-Predictor.git
cd Dogecoin-LSTM-Predictor
# 2. (Optional) Create virtual environment
python -m venv venv
source venv/bin/activate # or venv\Scripts\activate on Windows
# 3. Install requirements
pip install -r requirements.txt
# 4. Run the Streamlit app
streamlit run app.py
Kurra Srinivas
📧 Email: srinivaskurra886@gmail.com
🔗 LinkedIn: https://www.linkedin.com/in/kurra-srinivas-31727420b/
🐙 GitHub: Kurra-Srinivas