📌 Note: A newer version of the related article is available:
Version 3.0 – June 2025: https://doi.org/10.5281/zenodo.15706835
Please consider referring to this updated version for the most recent results and clarifications.
📌 Note: This model complements the simulator-based framework described in
Cognitive Simulator and Subjective Physics – Version 6.0 (June 2025)
https://doi.org/10.5281/zenodo.15705869
This repository contains the simulation code and visualizations accompanying the second study on subjective quantum structures, observer decoherence, and categorical collapse models in the context of cognitive quantum physics. This work extends the simulation framework introduced in the previous publication:
Khomyakov, V. (2025). Subjective Quantum Structures: A Categorical Model of Observer Collapse. Zenodo. https://doi.org/10.5281/zenodo.15670260
The project includes the following Python modules:
-
experiment_renkel_decoherence.py
Main simulation script modeling entropy dynamics and collapse probabilities under observer decoherence. -
observer_simulator_decoherence.py
Core logic for cognitive observers, modeling decoherence as emergent instability in subjective phase space. -
visualization_decoherence.py
Plotting and figure generation for all results used in the publication. -
test_visualization.py
Unit tests to ensure correctness and consistency of generated visualizations. -
config_decoherence.py
Stores default parameters and simulation constants (step count, seeds, thresholds) for reproducible experiments.
All plots are saved to the results/
directory in both .pdf
and .png
formats.
decoherence_experiment/
├── LICENSE
├── .gitignore
├── README.md
├── requirements.txt
├── config_decoherence.py
├── experiment_renkel_decoherence.py
├── observer_simulator_decoherence.py
├── visualization_decoherence.py
├── test_visualization.py
├── results/
│ ├── ...
└── figures/
├── decoherence_effects.pdf
├── decoherence_effects.png
├── plot_collapse.pdf
├── plot_collapse.png
├── plot_decoherence.pdf
├── plot_decoherence.png
├── plot_entropy.pdf
├── plot_entropy.png
├── plot_entropy_comparison.pdf
└── plot_entropy_comparison.png
This project uses the following Python libraries:
numpy
matplotlib
tqdm
pytest
Install them with:
pip install -r requirements.txt
To run the simulation:
python experiment_renkel_decoherence.py
Generated plots will be saved in the results/
directory. The script automatically creates the directory if it doesn't exist.
To generate visualizations independently:
python visualization_decoherence.py
To test plot generation:
python test_visualization.py
-
decoherence_effects.pdf/png
Summary plot combining all key dynamics.
Integrates entropy, collapse probability, and decoherence effects. -
plot_collapse.pdf/png
Observer collapse probability vs. λ (state distinguishability). -
plot_entropy_comparison.pdf/png
Comparison of entropy: decoherence vs original. -
plot_entropy.pdf/png
Cognitive entropy as a function of resolution ε.
Shows quantized entropy transitions during cognitive differentiation. -
plot_decoherence.pdf/png
Decoherence effect on state-space trajectories.
Simulation parameters are defined in config_decoherence.py
. By default:
STEPS = 100
SEED_DECOHERENCE = 42
SEED_ORIGINAL = 123
These can be overridden directly in the script or extended via CLI in future versions.
This project is licensed under the terms of the MIT License.
🔓 Open access publication available at Zenodo.
If you use this code or refer to the associated research, please cite:
@misc{khomyakov2025subjective_quantum_structures,
author = {Khomyakov, Vladimir},
title = {Subjective Quantum Structures: A Categorical Model of Observer Collapse},
year = 2025,
publisher = {Zenodo},
doi = {10.5281/zenodo.15670260},
url = {https://doi.org/10.5281/zenodo.15670260},
note = {Available at Zenodo; open source code at \url{https://github.com/Khomyakov-Vladimir/subjective-quantum-structures}}
}
- 📘 Cognitive Distinguishability and Quantum Observer Simulation — A Phase Transition Perspective
- 🧐 Based on the formalism of categorical observers and subjective decoherence in emergent quantum cognition