Capturing electronic screens with digital cameras introduces high-frequency artifacts, known as moiré patterns, degrading overall image quality and colors. This work proposes ESwinDNet, an image demoiréing model that combines an encoder-decoder architecture with multiscale Swin Transformer layers. These layers efficiently compute pixel-level attention, a crucial aspect for low-level vision tasks such as image demoiréing. The proposed ESwinDNet model achieves comparable results to the large variant of the baseline model ESDNet-L on the UHDM dataset, demonstrating its capabilities in the removal of moiré patterns in 4K images, with nearly half the number of parameters and floating point operations, yielding faster training and inference time
git clone https://github.com/Karim19Alaa/ESwinDNet.git
cd ESwinDNet
Using Python 3.7+
# Create virtual environment
python -m venv eswindnet_env
# Activate it
# For Linux/MacOS:
source eswindnet_env/bin/activate
# For Windows (PowerShell):
eswindnet_env\Scripts\activate
pip install --upgrade pip
pip install -r requirements.txt
Make sure to download UHDM or FHMDi dataset in the datasets
directory or edit the training scripts to point to their location.
./scripts/train_eswindnet_uhdm.sh
./scripts/train_eswindnetL_uhdm.sh
./scripts/train_eswindnet_fhdmi.sh
./scripts/train_eswindnetL_fhdmi.sh
Make sure to edit the scripts to use the desire checkpoint.
./scripts/test/test_eswindnet_uhdm.sh
./scripts/test/test_eswindnetL_uhdm.sh
./scripts/test/test_eswindnet_fhdmi.sh
./scripts/test/test_eswindnetL_fhdmi.sh
This repository relies on the work of
And the help of
@INPROCEEDINGS{11084615,
author={Alaa, Karim and Torki, Marwan},
booktitle={2025 IEEE International Conference on Image Processing (ICIP)},
title={Eswindnet: Image Demoiréing Using Multiscale Swin Transformer Layers},
year={2025},
volume={},
number={},
pages={845-850},
keywords={Wavelet transforms;Training;Image quality;Costs;Image color analysis;Computational modeling;Semantics;Transformers;Digital cameras;Software development management;Image Demoiréing;Swin Transformer;Multiscale Network;Wavelet Transform},
doi={10.1109/ICIP55913.2025.11084615}}