Official PyTorch implementation for CVPR 2025 paper:
ESC: Erasing Space Concept for Knowledge Deletion
Tae-Young Lee*, Sundong Park*, Minwoo Jeon*, Hyoseok Hwang
- detailed scripts.
- upload requirements.txt.
- upload the original model checkpoints.
- Python 3.10.x
- Torch 2.1.0
- Torchvision 0.16.0
- NVIDIA GeForce RTX 3090 / A5000 / A6000
- CUDA 12.2
git clone git@github.com/KHU-VGI/ESC.git
cd ESC
conda create -n ESC python=3.10
conda activate ESC
pip install -r requirements.txt# ESC
python unlearn.py --exp ESC_AllCNN_CIFAR10 \
--model_name AllCNN \
--method ESC \
--evaluation \
--mia \
--kr
# ESC-T
python unlearn.py --exp ESC_T_AllCNN_CIFAR10 \
--model_name AllCNN \
--method ESC_T \
--evaluation \
--mia \
--kr@inproceedings{lee2025esc,
author = {Lee, Tae-Young and Park, Sundong and Jeon, Minwoo and Hwang, Hyoseok and Park, Gyeong-Moon},
title = {ESC: Erasing Space Concept for Knowledge Deletion},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2025},
pages = {5010--5019}
}