Skip to content

KMORaza/Optimal_Bridge_Design_using_ACO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 

Repository files navigation

Optimales Brückendesign mittels Ameisenkolonie-Optimierung (Optimizing structural design of bridge using ant colony optimization)

Overview

  • Load Requirements:
    • Dead Load = 200 kN
    • Live Load = 800 kN
    • Dynamic Load = 300 kN
  • Environmental Factors:
    • Wind Load = 100 kN
    • Seismic Factor = 0.5
  • Cost Constraint: Max Budget = $5000
  • Span Length: Between 20 m and 60 m
  • Components: 10 structural elements

Objective

Minimize:
1. Total weight of the bridge
2. Construction complexity

Subject to:
1. Load capacity ≥ Total static load (Dead + Live)
2. Dynamic load capacity ≥ Required dynamic load
3. Cost ≤ $5000


Solution Steps

  • Define Material Choices
Material Density (g/cm³) Strength (MPa) Cost ($/kg) Fatigue Resistance Corrosion Resistance
Steel 7.85 500 50 0.8 0.6
Aluminum 2.7 300 80 0.7 0.8
Concrete 2.4 40 20 0.9 0.5
  • Determine Cross-Sectional Areas

Possible cross-sectional areas: A ∈ {10, 20, 30, 40, 50} cm²

  • Choose Component Heights

Height range: h ∈ [1, 5] m

  • Select Span Length

Discrete options: L ∈ {20, 30, 40, 50, 60} m

  • Assign Critical vs. Non-Critical Components

    • Critical components (e.g., main beams) must support the primary loads.
    • Non-critical components (e.g., bracings) contribute to stability.
  • Structural Analysis

    • Weight Calculation: W = Density × Length × A × 10^(-3) kg
    • Strength Check: Max Load Capacity = min(Strength×A) × (Redundancy Factor/Safety Factor), where Redundancy Factor = 1.2, Safety Factor = 1.5
    • Dynamic Load Check: Fatigue Limit = Fatigue Resistance × Strength
    • Environmental Stability: Env. Factor = 1 − (Wind Load/1000 + Seismic Factor/10); Adjusted Load Capacity = Max Load Capacity × Env. Factor
  • Cost Calculation

    • Total Cost = ∑(Material Cost × Weight)
  • Fitness Evaluation

    • If all constraints are satisfied: Fitness = Total Weight + (Construction Complexity × 100)
    • Else: Fitness = ∞ (invalid solution)

Sample Calculation

  • Span Length (L): 40 m
  • Components:
    • 5 critical (steel, A = 30 cm², h = 3 m)
    • 5 non-critical (aluminum, A = 20 cm², h = 2 m)
  • Component Length: Length per component = 40/5 = 8 m
  • Weight:
    • Steel: 7.85 × 8 × 30 × 10^(-3) = 1.884 kg
    • Aluminum: 2.7 × 8 × 20 × 10^(-3) = 0.432 kg
    • Total Weight = 5 × 1.884 + 5 × 0.432 = 11.58 kg
  • Strength Check:
    • Steel: 500 × 30 = 15000 kN
    • Max Load Capacity = (15000 × 1.2)/1.5 = 12000 kN
    • Required Static Load = 200 + 800 = 1000 kN ⟶ OK
  • Dynamic Load Check:
    • Fatigue Limit = 0.8 × 15000 = 12000 kN
    • Required Dynamic Load = 300 kN ⟶ OK
  • Environmental Stability:
    • Env. Factor = 1 - (100/1000 + 0.5/10) = 0.85
    • Adjusted Capacity = 12000 × 0.85 = 10200 kN > Wind Load (100 kN) ⟶ OK
  • Cost:
    • Steel: 50 × 1.884 = 94.2$
    • Aluminum: 80 × 0.432 = 34.56$
    • Total Cost = 5 × 94.2 + 5 × 34.56 = 643.8$ < $5000 ⟶ OK
  • Fitness:
    • Construction Complexity 10/50 = 0.2
    • Fitness = 11.58 + (0.2 × 100) = 31.58

Optimal Solution

  • After evaluating multiple designs, the best solution is selected based on:
    • Minimum Fitness Value (lowest weight + complexity).
    • Constraint Satisfaction (loads, cost).
  • Solution
    • Span Length = 40 m
    • Materials = Steel (critical), Aluminum (non-critical)
    • Cross-Sectional Areas = 30 cm² (critical), 20 cm² (non-critical)
    • Total Weight = 11.58 kg
    • Cost = $643.80
    • Fitness = 31.58

Releases

No releases published

Packages

No packages published

Languages