Skip to content

JulietLJY/VLPose

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

VLPose: Bridging the Domain Gap in Pose Estimation with Language-Vision Tuning

impression

Framework

framework

Performance

Performance

RUN

Installation

Please refer to installation.md for more detailed installation and dataset preparation.

Train

  • Pretrained configs: configs/_ours_/coco/pretrain/cvl
  • Post-trained configs: configs/_ours_/humanart/pretrain/cvl
# Train with single GPU
python tools/train.py ${CONFIG_FILE} --work-dir ${WORK_DIR}
# Train with multi GPUS
bash ./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} --work-dir ${WORK_DIR}

Test

You can get our trained models here. Their corresponding configs are from configs/_ours_/humanart/pretrain/cvl:

  • first_amiddle_last_add_concat_attn_blip-B_kw1_vit-B_dp20.py
  • first_amiddle_last_add_concat_attn_blip-B_kw1_vit-B_sp20.py
  • first_amiddle_last_add_concat_attn_blip-B_kw1_vit-H_dp5.py
  • first_amiddle_last_add_concat_attn_blip-B_kw1_vit-H_sp5.py
  • first_amiddle_last_add_concat_attn_blip-B_kw1_vit-L_dp10.py
  • first_amiddle_last_add_concat_attn_blip-B_kw1_vit-L_sp10.py
  • first_amiddle_last_add_concat_attn_blip-B_kw1_vit-S_dp50.py
  • first_amiddle_last_add_concat_attn_blip-B_kw1_vit-S_sp50.py
# Test with single GPU
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --work-dir ${WORK_DIR}
# Test with multi GPUs
bash ./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM}  --work-dir ${WORK_DIR}

Citation

If you find this project useful in your research, please consider cite:

@misc{li2024vlposebridgingdomaingap,
  title={VLPose: Bridging the Domain Gap in Pose Estimation with Language-Vision Tuning}, 
  author={Jingyao Li and Pengguang Chen and Xuan Ju and Hong Xu and Jiaya Jia},
  year={2024},
  eprint={2402.14456},
  archivePrefix={arXiv},
  primaryClass={cs.CV},
  url={https://arxiv.org/abs/2402.14456}, 
}

About

Official code of VLPose: Bridging the Domain Gap in Pose Estimation with Language-Vision Tuning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published