@@ -16,17 +16,15 @@ rand_tangent(rng::AbstractRNG, x::Integer) = NoTangent()
16
16
# Try and make nice numbers with short decimal representations for good error messages
17
17
# while also not biasing the sample space too much
18
18
function rand_tangent (rng:: AbstractRNG , x:: T ) where {T<: Number }
19
- return round (8 randn (rng, T), sigdigits= 6 , base= 2 )
19
+ return round (8 randn (rng, T), sigdigits= 5 , base= 2 )
20
20
end
21
21
rand_tangent (rng:: AbstractRNG , x:: Float64 ) = rand (rng, - 9 : 0.01 : 9 )
22
22
function rand_tangent (rng:: AbstractRNG , x:: ComplexF64 )
23
23
return ComplexF64 (rand (rng, - 9 : 0.1 : 9 ), rand (rng, - 9 : 0.1 : 9 ))
24
24
end
25
25
26
-
27
- # TODO : right now Julia don't allow `randn(rng, BigFloat)`
28
- # see: https://github.com/JuliaLang/julia/issues/17629
29
- rand_tangent (rng:: AbstractRNG , :: BigFloat ) = big (rand_tangent (rng, Float64))
26
+ # BigFloat/MPFR is finicky about short numbers, this doesn't always work as well as it should
27
+ rand_tangent (rng:: AbstractRNG , :: BigFloat ) = round (big (8 randn (rng)), sigdigits= 5 , base= 2 )
30
28
31
29
rand_tangent (rng:: AbstractRNG , x:: StridedArray ) = rand_tangent .(Ref (rng), x)
32
30
rand_tangent (rng:: AbstractRNG , x:: Adjoint ) = adjoint (rand_tangent (rng, parent (x)))
0 commit comments