1
1
"""
2
2
rand_tangent([rng::AbstractRNG,] x)
3
3
4
- Returns a randomly generated tangent vector appropriate for the primal value `x`.
4
+ Returns a arbitary tangent vector _appropriate_ for the primal value `x`.
5
+ Note that despite the name, no promises on the statistical randomness are made.
6
+ Rather it is an arbitary value, that is generated using the `rng`.
5
7
"""
6
8
rand_tangent (x) = rand_tangent (Random. GLOBAL_RNG, x)
7
9
@@ -11,11 +13,20 @@ rand_tangent(rng::AbstractRNG, x::AbstractString) = NoTangent()
11
13
12
14
rand_tangent (rng:: AbstractRNG , x:: Integer ) = NoTangent ()
13
15
14
- rand_tangent (rng:: AbstractRNG , x:: T ) where {T<: Number } = randn (rng, T)
16
+ # Try and make nice numbers with short decimal representations for good error messages
17
+ # while also not biasing the sample space too much
18
+ function rand_tangent (rng:: AbstractRNG , x:: T ) where {T<: Number }
19
+ return round (8 randn (rng, T), sigdigits= 6 , base= 2 )
20
+ end
21
+ rand_tangent (rng:: AbstractRNG , x:: Float64 ) = rand (rng, - 9 : 0.01 : 9 )
22
+ function rand_tangent (rng:: AbstractRNG , x:: ComplexF64 )
23
+ return ComplexF64 (rand (rng, - 9 : 0.1 : 9 ), rand (rng, - 9 : 0.1 : 9 ))
24
+ end
25
+
15
26
16
27
# TODO : right now Julia don't allow `randn(rng, BigFloat)`
17
28
# see: https://github.com/JuliaLang/julia/issues/17629
18
- rand_tangent (rng:: AbstractRNG , :: BigFloat ) = big (randn (rng))
29
+ rand_tangent (rng:: AbstractRNG , :: BigFloat ) = big (rand_tangent (rng, Float64 ))
19
30
20
31
rand_tangent (rng:: AbstractRNG , x:: StridedArray ) = rand_tangent .(Ref (rng), x)
21
32
rand_tangent (rng:: AbstractRNG , x:: Adjoint ) = adjoint (rand_tangent (rng, parent (x)))
0 commit comments