Skip to content

JuanMaParraU/History-aware-Reinforcement-Learning

Repository files navigation

History-aware-Reinforcement-Learning

ABS SAS

Mobile communications case study using autonomous airborne base stations. The system uses RL for positioning the simulated drones while maximising the covered end users.

##User Guide for linux/osx command line

  1. Check python version:
python --version  
  1. Download anaconda (check python 2 or 3 and select the appropriate Anaconda 2 or 3):
cd /tmp 

curl -O https://repo.anaconda.com/archive/AnacondaX-2019.03-Linux-x86_64.sh 

bash AnacondaX-2019.03-Linux-x86_64.sh 
  1. Check installation:
 conda -h
  1. Create and activate anaconda environment (“drones_env”) the environment should be created with Python 3.X as interpreter:
conda create --name drones_env python=3.X 

conda activate drones_env 
  1. Install numpy
conda install -c anaconda numpy 
  1. Install pandas
conda install -c anaconda pandas 
  1. Install torch
conda install -c pytorch pytorch 
  1. Install matplotlib
conda install -c conda-forge matplotlib 
  1. Install paho-mqtt. Check docmuentation about MQTT here
conda install -c conda-forge paho-mqtt
  1. Run script
python main.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •  

Languages