Skip to content

JoaoPedroZampoli/Fake-News-Analyzer

Repository files navigation

Fake News Analyzer

Final project for the Artificial Intelligence course [2025.1] at ICT - Unifesp

Special thanks to my partner, Luiza de Souza Ferreira for her contributions to this project

Trabalho Final de IA (1)

📚 About

Fake News Analyzer is a machine learning project designed to classify news articles as real or fake. It leverages traditional ML algorithms and modern NLP techniques, including SVM, Naive Bayes, KNN, and BERT-based transformers.

🚀 Features

  • Preprocessing and cleaning of news datasets
  • Training and evaluation of multiple ML models
  • Support for both classical ML and transformer-based models
image

🛠️ Technologies

  • Python 3.12+
  • scikit-learn
  • pandas, numpy
  • TensorFlow & Hugging Face Transformers (for BERT)

📦 Project Structure

Fake-News-Analyzer/
│   .gitattributes
│   Apresentação Final - Fake News Analyzer.pdf
│   Fake News Analyzer.ipynb
│   pre-processed.csv
│   README.md
│   Relatório - Detecção de Fake News usando NLP.pdf
│
└───modelos/
    │   knn_model.pkl
    │   knn_vectorizer.pkl
    │   naive_bayes_model.pkl
    │   naive_bayes_vectorizer.pkl
    │   svm_model.pkl
    │   svm_vectorizer.pkl
    │
    └───bert/
        ├───bert_model/
        │       config.json
        │       tf_model.h5
        │
        └───bert_tokenizer/
                special_tokens_map.json
                tokenizer_config.json
                vocab.txt

⚡ Getting Started

  1. Clone the repository:

    git clone https://github.com/JoaoPedroZampoli/Fake-News-Analyzer.git
    cd Fake-News-Analyzer
  2. Install dependencies

    pip install numpy pandas matplotlib seaborn tensorflow transformers scikit-learn
    
    
  3. Create the models

    • run Fake News Analyzer.ipynb cells with Python to create new models if wanted

📄 License

This project is for educational purposes.

About

Trabalho final da disciplina de Inteligência Artificial [2025.1] do ICT - Unifesp

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published