Skip to content

JihadDem/Classification-cancer-sein

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

Classification du cancer du sein ML

Nous sommes en plein mois de prévention du cancer du sein, voilà une bonne occasion d'implémenter un modéle prédictant le caractére bénin ou malin dans un jeu de données

Bréve explication du fonctionnement

La première importante étape est d'importer les librairies utile a ce projet. On importe par exemple la fonction "train_test_split" pour séparer nos donnée d'entrainement à nos données testeuses. On a utilisé le modéle de régresion logistique et la fonction "accuracy_score" afin d'évaluer le pourcentage de prédictions correctes.

breast_cancer_dataset = sklearn.datasets.load_breast_cancer()

Ici on a chargé le jeu de données de la librairie sklearn.

data_frame = pd.DataFrame(breast_cancer_dataset.data, columns = breast_cancer_dataset.feature_names)

On charge notre donnée dans un dataframe.

data_frame['Rubrique'] = breast_cancer_dataset.target

On ajoute la colomne Rubrique et pointe 0 ou 1 s'il est bénin ou malin

data_frame.groupby('Rubrique').mean()

La partie la plus importante est ici, on regroupe les données et remarquons que les valeurs sont légérement plus élevées pour les cas malin que bénin

prediction = model.predict(input_data_reshaped)
print(prediction) 
if (prediction[0] == 0):
    print('Le cancer du sein est malin')

else:
  print('Le cancer du sein est bénin')

La derniere étape est de construire un système qui predicte qui nous informe si le cancer est bénin ou malin

About

No description or website provided.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages