[English] Introduction
Refers to https://oeis.org/A011541 sequence.
See also http://www.christianboyer.com/taxicab/ and http://www.christianboyer.com/taxicab/TaxicabUpperBounds.pdf
(or archive at https://cs.uwaterloo.ca/journals/JIS/VOL11/Boyer/boyer-new.pdf)
Taxicab(n) - or Ta(n) or T(n) or T(n, 1) or Taxicab(3, n, n) - is the smallest number expressible as a sum of two positive cubes in n different ways.
For n > 6, as described in Boyer's paper, there is an upper bound list, as Bta(n) described in OEIS sequence.
Ta(n) <= BTa(n) = r * s, with r < s
r = x + y, with x < y
s = x² - xy + y²
delta = 12s - 3r²
x = (3r - sqrt(delta)) / 6
y = (3r + sqrt(delta)) / 6
sqrt(delta) = 3 * (y - x)
Note that s can also be written: s = (y - x)² + x * y
then for each {x,y}, Ta(n) = sum * ( (diff)² + product ).
Let x(n, i) and y(n, i) denote the i th x and y for BTa(n) or Ta(n).
If x or y is odd (but not both):
w = (y + x + 1) / 2 = (r + 1) / 2
v = (y - x - 1) / 2 = y - w = (sqrt(delta) - 1) / 6
Ta(n) <= BTa(n) = (w - v - 1)³ + (v + w)³
else (if x and y are both even or are both odd)
w = (x + y) / 2 = r / 2
v = (y - x) / 2 = y - w = sqrt(delta) / 6
Ta(n) <= BTa(n) = (w - v)³ + (v + w)³
[English] Decomposition of Ta(n) or BTa(n)
- source code contains all x,y values with r,s and delta components for checking matches
- text output of the program execution shows if values are correct
- taxicab_x contains x values
- taxicab_y contains y values
- taxicab_r contains r values
- taxicab_s contains s values
[French]
Détails sur wikipedia.
Le plus petit nombre Ta(n) qui est la somme de 2 cubes entiers positifs x(n, i) et y(n, i) de n façons, soit Ta(n) = x(n, i)^3 + y(n, i)^3 (pour i allant de 1 à n).
Pour n > 6, BTa(n) indique la limite supérieure de Ta(n).
On pourra également utiliser la notation T(n, k) pour la k-ième plus petite solution non-primitive (avec k > 1) pouvant s'écrire de n manières comme une somme de deux cubes d'entiers positifs.
[French] Remarques
- La valeur de x(n+1, 1) est supérieure (ou égale pour n=1) à celle de y(n, 1)
- Si on multiplie les {x(5, i), y(5, i)} par 79 ou 139 ou un multiple de 79 ou un multiple de 139, on obtient un multiple de T(6)
- Certains x(n, i) ont une différence multiple de 11: {1,12}, {414,436}, {331954,365757}, {27093208,28906206}
- de même pour: {255,167}, {13322,2421}, {231518,38787}, {26590452,582162}
- Sauf pour T(1), il y a plusieurs x(n, i) multiples de 3 mais on peut constater un couple de x(n, i) (espacés de 2 termes) multiples de 3 (et donc leur différence aussi): {9,12}, {228,423}, {10200,18072}, {221424,336588}, {1766742096,2685635652}
[English] Relationships
-
BTa(23) <= 505624992450102221744244678441689845434887715317085055675501100061664233777550644179891369792998312033624027623507268993575520089167244066787797454194149200985506392000000000
- z = 97 * 491 = 47627
- BTa(23) = z^3 * BTa(22)
-
BTa(22) <= 4680247859298792255465896583920257161776853980641720488623945439873944558056759119053262369879441902130153472288312996410513410535472957059046536164424000000000
- z = 11 * 31 * 103 = 35123
- BTa(22) = z^3 * BTa(21)
-
BTa(21) <= 108017480260055891349349434078007118409816211596074421874782013152781209964290521967447172971431469705047741717793222992124981940703226072000000000
- z = 127 * 197 = 25019
- BTa(21) = z^3 * BTa(20)
- {x(21, i), y(21, i)} = z * {x(20, i), y(20, i)} (except for i=7)
-
BTa(20) <= 6897380753715950027554119762858815120976857451913869723850868496922922856256366585322070924221550029921862628606999892276808000000000
- z = 5^2 * 457 * 521 = 5952425
- BTa(20) = z^3 * BTa(18)
- {x(20, i), y(20, i)} = z * {x(18, i), y(18, i)} (except for i=14)
-
BTa(19) <= 89155799373431424956779039683208074195259067508030416952016859893056008200986665364956362114476625742414288155368000000000
-
BTa(18) <= 32704115261272222010108668321371490956498583891096244871994833214348230808345220932546725287574509356813791744000
- z = 37 * 181 = 6697
- BTa(18) = z^3 * BTa(17)
- {x(18, i), y(18, i)} = z * {x(17, i), y(17, i)} (except for i=1)
-
BTa(17) <= 108883358434560363503260016942467566965657808716401027019007732065428469239764403684536752685040128000
- z = 4261
- BTa(17) = z^3 * BTa(16)
- {x(17, i), y(17, i)} = z * {x(16, i), y(16, i)} (except for i=3)
-
BTa(16) <= 1407430328457240141244921568479580896498768360005757901394557724136294559835243494681088000
- z = 2 * 607 = 1214
- BTa(16) = z^3 * BTa(15)
- {x(16, i), y(16, i)} = z * {x(15, i), y(15, i)} (except for i=12)
-
BTa(15) <= 786630615595626829796137755567437844038832146564530660386728812791938555036352000
- z = 503
- BTa(15) = z^3 * BTa(14)
- {x(15, i), y(15, i)} = z * {x(14, i), y(14, i)} (except for i=4)
-
BTa(14) <= 6181115942163278484307116174514304039670628856329988877227399275142976000
- z = 397
- BTa(14) = z^3 * BTa(13)
- {x(14, i), y(14, i)} = z * {x(13, i), y(13, i)} (except for i=6)
-
BTa(13) <= 98785992977316717572070208794037178343163969803121800608526912000
- z = 3 * 61 = 183
- BTa(13) = z^3 * BTa(12)
- {x(13, i), y(13, i)} = z * {x(12, i), y(12, i)} (except for i=4)
-
BTa(12) <= 16119148654034302034428760115512552827992287460693283776000
- z = 3 * 19 = 57
- BTa(12) = z^3 * BTa(11)
- {x(12, i), y(12, i)} = z * {x(11, i), y(11, i)} (except for i=2)
- {x(12,12), y(12,12)} do not contain 7
- {x(12, 5), y(12, 5)} do not contain 13
- {x(12, 4), y(12, 4)} do not contain 17
-
BTa(11) <= 87039729655193781808322993393446581825405320183232000
- {x(11,11), y(11,11)} do not contain 7
- {x(11, 4), y(11, 4)} do not contain 13
- {x(11, 3), y(11, 3)} do not contain 17
-
BTa(10) <= 7335345315241855602572782233444632535674275447104
- z = 13 * 29 = 377
- BTa(10) = z^3 * BTa(9)
- {x(10, i), y(10, i)} = z * {x(9, i), y(9, i)} (except for i=2)
- {x2, y2} do not contain 13 * 29
- {x3, y3} do not contain 139
- {x5, y5} do not contain 101
-
BTa(9) <= 136897813798023990395783317207361432493888
- z = 139
- BTa(9) = z^3 * BTa(8)
- {x(9, i), y(9, i)} = z * {x(8, i), y(8, i)} (except for i=2)
-
BTa(8) <= 50974398750539071400590819921724352
- z = 127
- BTa(8) = z^3 * BTa(7)
- {x(8, i), y(8, i)} = z * {x(7, i), y(7, i)} (except for i=8)
-
BTa(7) <= 24885189317885898975235988544
- z = 101
- BTa(7) = z^3 * BTa(6)
- {x(7, i), y(7, i)} = z * {x(6, i), y(6, i)} (except for i=3)
-
Ta(6) = 24153319581254312065344
- z = 79
- BTa(6) = z^3 * BTa(5)
- {x(6, i), y(6, i)} = z * {x(5, i), y(5, i)} (except for i=1)
-
Ta(5) = 48988659276962496
-
Ta(4) = 6963472309248
-
Ta(3) = 87539319
- Ta(3) = (302 - 134 -1)³ + (302 + 134)³ = (326 - 97 - 1)³ + (326 + 97)³ = (335 - 79 - 1)³ + (335 + 79)³
-
Ta(2) = 1729
-
Ta(1) = 2
Others
T(19) <= 20400824749409517528805616329601248054238975120047899653306832282155305931553802798551427446267572330642814901020208524571911529017539708401834884288000 = 2^9 × 3^12 × 5^3 × 7^4 × 11^3 × 13^4 × 17^3 × 19 × 29^3 × 41^3 × 43 × 73 × 79^3 × 97 × 101^3 × 127^3 × 139^3 × 157 × 271^3 × 349^3 × 601^3 × 727^3 × 733^3 × 2311^3 × 2971^3 × 4327^3 × 7549^3
T(18) <= 1669102760262770599073633207770749663711833995754118800009115774272350540676865796358235477762975575548685960795354954969975483624898697728 = 2^9 × 3^12 × 7^4 × 11^3 × 13^4 × 19 × 29^3 × 41^3 × 43 × 73 × 79^3 × 97 × 101^3 × 127^3 × 139^3 × 157 × 349^3 × 601^3 × 727^3 × 733^3 × 2311^3 × 2971^3 × 4327^3 × 7549^3
T(17) <= 390632494425592857308683115941747067399542361030496398592266116103976300384768055853952870509972688279894938439376270144482816 = 2^9 × 3^3 × 7^4 × 11^3 × 13^4 × 19 × 29^3 × 41^3 × 43 × 73 × 79^3 × 97 × 101^3 × 127^3 × 139^3 × 157 × 349^3 × 727^3 × 733^3 × 2311^3 × 2971^3 × 4327^3 × 7549^3
T(16) <= 133333879575067044255496407342541909372921060713622256889696224426242257299346008208169434186136206003482924680704 = 2^9 × 3^3 × 7^4 × 11^3 × 13^4 × 19 × 29^3 × 43 × 73 × 79^3 × 97 × 101^3 × 127^3 × 139^3 × 157 × 727^3 × 733^3 × 2311^3 × 2971^3 × 4327^3 × 7549^3
T(15) <= 254361007450418467683691805874871224061387429621450309607817376336263717732850126485501423293412997632 = 2^9 × 3^3 × 7^4 × 13^4 × 19 × 29^3 × 43 × 73 × 79^3 × 97 × 101^3 × 127^3 × 139^3 × 157 × 727^3 × 2311^3 × 2971^3 × 4327^3
T(14) <= 591265120715306076227178149379165201865336472346517495072293984450950965960475614042157568 = 2^9 × 3^3 × 7^4 × 13^4 × 19 × 29^3 × 43 × 73 × 79^3 × 97 × 101^3 × 127^3 × 139^3 × 157 × 727^3 × 2311^3 × 2971^3 × 4327^3
T(13) <= 5988146776742829080553965820313279739849705084894534523771076163371248442670016 = 2^6 × 3^3 × 7^4 × 13^4 × 19 × 29^3 × 43 × 73 × 79^3 × 97 × 101^3 × 127^3 × 139^3 × 157 × 727^3 × 2971^3 × 4327^3
T(7, ?) = 64866613980488624314617087936
x1 = 80920518 = 2 * 3 * 7 * 83 * 139 * 167
x2 = 317835644 = 2^2 * 7 * 79 * 143687
x3 = 425920047 = 3 * 7 * 79 * 139 * 1847
x4 = 1184180059 = 79 * 139 * 107839
x5 = 2254311452 = 2^2 * 17 * 79 * 139 * 3019
x6 = 2431456944 = 2^4 * 3 * 7 * 79 * 139 * 659
x7 = 2542299158 = 2 * 7 * 23 * 79 * 139 * 719
y7 = 3645186874 = 2 * 7 * 79 * 131 * 139 * 181
y6 = 3696072828 = 2^2 * 3 * 7 * 79 * 139 * 4007
y5 = 3765955912 = 2^3 * 79 * 139 * 163 * 263
y4 = 3983390693 = 79 * 139 * 362753
y3 = 4016377617 = 3 * 7 * 79 * 139 * 17417
y2 = 4017310528 = 2^6 * 7 * 11 * 17 * 79 * 607
y1 = 4017962634 = 2 * 3 * 7 * 139 * 311 * 2213
T(4, ?) = 1801049058342701083 = 7 * 31 * 37 * 43 * 163 * 193 * 9151 * 18121
x1 = 92227
x2 = 136635 = 3 * 5 * 9109
x3 = 341995 = 5 * 68399
x4 = 600259 = 11 * 197 * 277
y4 = 1165884 = 2^2 * 3 * 97157
y3 = 1207602 = 2 * 3^3 * 11 * 19 * 107
y2 = 1216102 = 2 * 23 * 26437
y1 = 1216500 = 2^2 * 3 * 5^3 * 811
T(3, ?) = 15170835645 = 3^2 * 5 * 7 * 31 * 37 * 199 * 211
x1 = 517 = 11 * 47
x2 = 709
x3 = 1733
y3 = 2152 = 2^3 * 269
y2 = 2456 = 2^3 * 307
y1 = 2468 = 2^2 * 617
T(3, 4) = 175959000 = 35^3 ∗ T(2, 2)
x1 = 70 = 2 * 5 * 7
x2 = 198 = 2 * 3^2 * 11
x3 = 315 = 3^2 * 5 * 7
y3 = 525 = 3 * 5^2 * 7
y2 = 552 = 2^3 * 3 * 23
y1 = 560 = 2^4 * 5 * 7
T(2, 2) = 4104 = (12 − 3)³ + (12 + 3)³ = 2³ * (1³ + 8³)
x1 = 2
x2 = 9 = 3^2
y2 = 15 = 3 * 5
y1 = 16 = 2^4