- put dataset dir
- activate conda environment
conda create -n <env_name> python=3.10
conda activate <env_name>
- set environment →
pip install -r requirements.txt
- model train →
python train.py
- model: MA-Net(https://ieeexplore.ieee.org/abstract/document/9201310)
- encoder: MobileNet V2(https://arxiv.org/abs/1801.04381)
- encoder weights: ImageNet(https://ieeexplore.ieee.org/document/5206848)
- test →
python test.py
download trained model: best_loocv_533_model_complete_state_dict_0100.pth
BATCH_SIZE = 64
num_epochs = 100
learning_rate = 1e-3
LOOCV Fold 115/200
- val GDS = 0.9488313794136047
- val mIoU = 0.9026442170143127
- val score(GDS + mIoU) = 1.8514755964279175
2024-k-health
├── 20241008_smart_health_care2_abnormal_public_001_200(drop after downloading the dataset)
│ └── breast
│ ├── image
│ │ └── ...
│ └── label
│ └── ...
├── graph(automatically generated when model training starts)
├── lib
│ ├── datasets
│ │ └── dicom_nii_2d_dataset_filter.py
│ ├── filters
│ │ ├── __init__.py
│ │ ├── clahe.py
│ │ └── flip.py
│ ├── losses
│ │ ├── __init__.py
│ │ └── dice_bce.py
│ └── metrics
│ └── score.py
├── loocv_533_model_complete_state_dict_0100.pth(automatically generated while model training)
├── README.md
├── requirements.txt
├── run.py
├── test.py
├── train.py
└── train_log.txt(automatically generated when model training starts)