Skip to content

JBNU-MacsLAB/2024-k-health

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Team 533

How to Use

  1. put dataset dir
  2. activate conda environment
    1. conda create -n <env_name> python=3.10
    2. conda activate <env_name>
  3. set environment → pip install -r requirements.txt
  4. model train → python train.py
  5. test → python test.py

Best Model

download trained model: best_loocv_533_model_complete_state_dict_0100.pth

BATCH_SIZE = 64
num_epochs = 100
learning_rate = 1e-3

LOOCV Fold 115/200

  • val GDS = 0.9488313794136047
  • val mIoU = 0.9026442170143127
  • val score(GDS + mIoU) = 1.8514755964279175

Structure

2024-k-health
├── 20241008_smart_health_care2_abnormal_public_001_200(drop after downloading the dataset)
│   └── breast
│       ├── image
│       │   └── ...
│       └── label
│           └── ...
├── graph(automatically generated when model training starts)
├── lib
│   ├── datasets
│   │   └── dicom_nii_2d_dataset_filter.py
│   ├── filters
│   │   ├── __init__.py
│   │   ├── clahe.py
│   │   └── flip.py
│   ├── losses
│   │   ├── __init__.py
│   │   └── dice_bce.py
│   └── metrics
│       └── score.py
├── loocv_533_model_complete_state_dict_0100.pth(automatically generated while model training)
├── README.md
├── requirements.txt
├── run.py
├── test.py
├── train.py
└── train_log.txt(automatically generated when model training starts)

About

mammography image segmentation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages