-
Notifications
You must be signed in to change notification settings - Fork 2
affine bridge ITK-MONAI #6
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
ntatsisk
wants to merge
11
commits into
InsightSoftwareConsortium:master
Choose a base branch
from
ntatsisk:affine_matrix_bridge
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from 4 commits
Commits
Show all changes
11 commits
Select commit
Hold shift + click to select a range
414f854
affine bridge ITK-MONAI
ntatsisk 38f5386
use data available online for testing
ntatsisk 65ee988
affine bridge for 2D images
ntatsisk 87d6dcc
fix garbage collection error for itk matrix
ntatsisk cc46e1a
move matrices calculations in separate functions
ntatsisk affa7b3
added monai_to_itk_affine conversion
ntatsisk ee12c45
rename transform functions + pythonic ITK calls
ntatsisk e5eaea1
removed ITKElastix dependency
ntatsisk 12f4d4b
allow the use of a reference image space
ntatsisk 37cc4f9
fix issue with non-diagonal direction matrix
ntatsisk 7a253b2
assert zero indices for regions, and matching array shapes
ntatsisk File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,261 @@ | ||
import copy | ||
import itk | ||
import torch | ||
import numpy as np | ||
from monai.transforms import Affine | ||
from monai.data import ITKReader | ||
from monai.data.meta_tensor import MetaTensor | ||
from monai.transforms import EnsureChannelFirst | ||
from monai.utils import convert_to_dst_type | ||
|
||
def metatensor_to_array(metatensor): | ||
metatensor = metatensor.squeeze() | ||
metatensor = metatensor.permute(*torch.arange(metatensor.ndim - 1, -1, -1)) | ||
|
||
return metatensor.get_array() | ||
|
||
|
||
def image_to_metatensor(image): | ||
""" | ||
Converts an ITK image to a MetaTensor object. | ||
|
||
Args: | ||
image: The ITK image to be converted. | ||
|
||
Returns: | ||
A MetaTensor object containing the array data and metadata. | ||
""" | ||
reader = ITKReader(affine_lps_to_ras=False) | ||
image_array, meta_data = reader.get_data(image) | ||
image_array = convert_to_dst_type(image_array, dst=image_array, dtype=itk.D)[0] | ||
metatensor = MetaTensor.ensure_torch_and_prune_meta(image_array, meta_data) | ||
metatensor = EnsureChannelFirst()(metatensor) | ||
|
||
return metatensor | ||
|
||
def remove_border(image): | ||
""" | ||
MONAI seems to have different behavior in the borders of the image than ITK. | ||
This helper function sets the border of the ITK image as 0 (padding but keeping | ||
the same image size) in order to allow numerical comparison between the | ||
result from resampling with ITK/Elastix and resampling with MONAI. | ||
|
||
To use: image[:] = remove_border(image) | ||
|
||
Args: | ||
image: The ITK image to be padded. | ||
|
||
Returns: | ||
The padded array of data. | ||
""" | ||
return np.pad(image[1:-1, 1:-1, 1:-1] if image.ndim==3 else image[1:-1, 1:-1], | ||
pad_width=1) | ||
|
||
def itk_to_monai_affine(image, matrix, translation, center_of_rotation=None): | ||
""" | ||
Converts an ITK affine matrix (2x2 for 2D or 3x3 for 3D matrix and translation | ||
vector) to a MONAI affine matrix. | ||
|
||
Args: | ||
image: The ITK image object. This is used to extract the spacing and | ||
direction information. | ||
matrix: The 2x2 or 3x3 ITK affine matrix. | ||
translation: The 2-element or 3-element ITK affine translation vector. | ||
center_of_rotation: The center of rotation. If provided, the affine | ||
matrix will be adjusted to account for the difference | ||
between the center of the image and the center of rotation. | ||
|
||
Returns: | ||
A 4x4 MONAI affine matrix. | ||
""" | ||
|
||
# Create affine matrix that includes translation | ||
ndim = image.ndim | ||
affine_matrix = torch.eye(ndim+1, dtype=torch.float64) | ||
affine_matrix[:ndim, :ndim] = torch.tensor(matrix, dtype=torch.float64) | ||
affine_matrix[:ndim, ndim] = torch.tensor(translation, dtype=torch.float64) | ||
|
||
# Adjust offset when center of rotation is different from center of the image | ||
if center_of_rotation: | ||
offset = np.asarray(get_itk_image_center(image)) - np.asarray(center_of_rotation) | ||
offset_matrix = torch.eye(ndim+1, dtype=torch.float64) | ||
offset_matrix[:ndim, ndim] = torch.tensor(offset, dtype=torch.float64) | ||
inverse_offset_matrix = torch.eye(ndim+1, dtype=torch.float64) | ||
inverse_offset_matrix[:ndim, ndim] = -torch.tensor(offset, dtype=torch.float64) | ||
|
||
affine_matrix = inverse_offset_matrix @ affine_matrix @ offset_matrix | ||
|
||
# Adjust based on spacing. It is required because MONAI does not update the | ||
# pixel array according to the spacing after a transformation. For example, | ||
# a rotation of 90deg for an image with different spacing along the two axis | ||
# will just rotate the image array by 90deg without also scaling accordingly. | ||
spacing = np.asarray(image.GetSpacing(), dtype=np.float64) | ||
spacing_matrix = torch.eye(ndim+1, dtype=torch.float64) | ||
inverse_spacing_matrix = torch.eye(ndim+1, dtype=torch.float64) | ||
for i, e in enumerate(spacing): | ||
spacing_matrix[i, i] = e | ||
inverse_spacing_matrix[i, i] = 1 / e | ||
|
||
affine_matrix = inverse_spacing_matrix @ affine_matrix @ spacing_matrix | ||
|
||
# Adjust direction | ||
direction = itk.array_from_matrix(image.GetDirection()) | ||
direction_matrix = torch.eye(ndim+1, dtype=torch.float64) | ||
direction_matrix[:ndim, :ndim] = torch.tensor(direction, dtype=torch.float64) | ||
inverse_direction = itk.array_from_matrix(image.GetInverseDirection()) | ||
inverse_direction_matrix = torch.eye(ndim+1, dtype=torch.float64) | ||
inverse_direction_matrix[:ndim, :ndim] = torch.tensor(inverse_direction, dtype=torch.float64) | ||
|
||
affine_matrix = inverse_direction_matrix @ affine_matrix @ direction_matrix | ||
|
||
return affine_matrix | ||
|
||
|
||
def get_itk_image_center(image): | ||
""" | ||
Calculates the center of the ITK image based on its origin, size, and spacing. | ||
This center is equivalent to the implicit image center that MONAI uses. | ||
|
||
Args: | ||
image: The ITK image. | ||
|
||
Returns: | ||
The center of the image as a list of coordinates. | ||
""" | ||
image_size = np.asarray(image.GetLargestPossibleRegion().GetSize(), np.float32) | ||
spacing = np.asarray(image.GetSpacing()) | ||
origin = np.asarray(image.GetOrigin()) | ||
center = image.GetDirection() @ ((image_size / 2 - 0.5) * spacing) + origin | ||
|
||
return center.tolist() | ||
|
||
|
||
def create_itk_affine_from_parameters(image, translation=None, rotation=None, | ||
scale=None, shear=None, | ||
center_of_rotation=None): | ||
""" | ||
Creates an affine transformation for an ITK image based on the provided parameters. | ||
|
||
Args: | ||
image: The ITK image. | ||
translation: The translation (shift) to apply to the image. | ||
rotation: The rotation to apply to the image, specified as angles in radians | ||
around the x, y, and z axes. | ||
scale: The scaling factor to apply to the image. | ||
shear: The shear to apply to the image. | ||
center_of_rotation: The center of rotation for the image. If not specified, | ||
the center of the image is used. | ||
|
||
Returns: | ||
A tuple containing the affine transformation matrix and the translation vector. | ||
""" | ||
itk_transform = itk.AffineTransform[itk.D, image.ndim].New() | ||
|
||
# Set center | ||
if center_of_rotation: | ||
itk_transform.SetCenter(center_of_rotation) | ||
else: | ||
itk_transform.SetCenter(get_itk_image_center(image)) | ||
|
||
# Set parameters | ||
if rotation: | ||
if image.ndim == 2: | ||
itk_transform.Rotate2D(rotation[0]) | ||
else: | ||
for i, angle_in_rads in enumerate(rotation): | ||
if angle_in_rads != 0: | ||
axis = [0, 0, 0] | ||
axis[i] = 1 | ||
itk_transform.Rotate3D(axis, angle_in_rads) | ||
|
||
if scale: | ||
itk_transform.Scale(scale) | ||
|
||
if shear: | ||
itk_transform.Shear(*shear) | ||
|
||
if translation: | ||
itk_transform.Translate(translation) | ||
|
||
matrix = np.asarray(itk_transform.GetMatrix(), dtype=np.float64) | ||
|
||
return matrix, translation | ||
|
||
|
||
def transform_affinely_with_transformix(image, translation, matrix, center_of_rotation=None): | ||
sz = tuple([str(e) for e in image.GetLargestPossibleRegion().GetSize()]) | ||
spacing = tuple([str(e) for e in image.GetSpacing()]) | ||
direction = tuple([str(e) for e in np.asarray(image.GetDirection()).flatten()]) | ||
origin = tuple([str(e) for e in np.asarray(image.GetOrigin()).flatten()]) | ||
index = tuple([str(e) for e in np.zeros(image.ndim, dtype=np.int32)]) | ||
|
||
parameter_map = { | ||
"Direction": direction, | ||
"Index": index, | ||
"Origin": origin, | ||
"Size": sz, | ||
"Spacing": spacing, | ||
"ResampleInterpolator": ("FinalLinearInterpolator", ) | ||
} | ||
|
||
parameter_object = itk.ParameterObject.New() | ||
parameter_object.AddParameterMap(parameter_map) | ||
|
||
# Transform | ||
itk_transform = itk.AffineTransform[itk.D, image.ndim].New() | ||
|
||
if center_of_rotation: | ||
itk_transform.SetCenter(center_of_rotation) | ||
else: | ||
itk_transform.SetCenter(get_itk_image_center(image)) | ||
|
||
itk_transform.SetMatrix(itk.matrix_from_array(matrix)) | ||
itk_transform.Translate(translation) | ||
|
||
# Transformix | ||
transformix_filter = itk.TransformixFilter[type(image)].New() | ||
transformix_filter.SetMovingImage(image) | ||
transformix_filter.SetTransformParameterObject(parameter_object) | ||
transformix_filter.SetTransform(itk_transform) | ||
transformix_filter.Update() | ||
output_image = transformix_filter.GetOutput() | ||
|
||
return np.asarray(output_image, dtype=np.float32) | ||
|
||
|
||
def transform_affinely_with_itk(image, matrix, translation, center_of_rotation=None): | ||
# Translation transform | ||
itk_transform = itk.AffineTransform[itk.D, image.ndim].New() | ||
|
||
# Set center | ||
if center_of_rotation: | ||
itk_transform.SetCenter(center_of_rotation) | ||
else: | ||
itk_transform.SetCenter(get_itk_image_center(image)) | ||
|
||
# Set matrix and translation | ||
itk_transform.SetMatrix(itk.matrix_from_array(matrix)) | ||
itk_transform.Translate(translation) | ||
|
||
# Interpolator | ||
image = image.astype(itk.D) | ||
interpolator = itk.LinearInterpolateImageFunction.New(image) | ||
# interpolator = itk.NearestNeighborInterpolateImageFunction.New(image) | ||
|
||
# Resample with ITK | ||
resampler = itk.ResampleImageFilter.New(image) | ||
resampler.SetInterpolator(interpolator) | ||
resampler.SetTransform(itk_transform) | ||
resampler.SetOutputParametersFromImage(image) | ||
resampler.Update() | ||
output_image = resampler.GetOutput() | ||
ntatsisk marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
return np.asarray(output_image, dtype=np.float32) | ||
|
||
|
||
def transform_affinely_with_monai(metatensor, affine_matrix): | ||
monai_transform = Affine(affine=affine_matrix, padding_mode="zeros", dtype=torch.float64) | ||
output_tensor, output_affine = monai_transform(metatensor, mode='bilinear') | ||
|
||
return metatensor_to_array(output_tensor) | ||
|
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
from test_cases import * | ||
import test_utils | ||
|
||
test_utils.download_test_data() | ||
|
||
# 2D cases | ||
filepath0 = str(test_utils.TEST_DATA_DIR / 'CT_2D_head_fixed.mha') | ||
filepath1 = str(test_utils.TEST_DATA_DIR / 'CT_2D_head_moving.mha') | ||
|
||
test_setting_affine_parameters(filepath=filepath0) | ||
test_arbitary_center_of_rotation(filepath=filepath0) | ||
test_registration(fixed_filepath=filepath0, moving_filepath=filepath1) | ||
|
||
# 3D cases | ||
filepath2 = str(test_utils.TEST_DATA_DIR / 'copd1_highres_INSP_STD_COPD_img.nii.gz') | ||
filepath3 = str(test_utils.TEST_DATA_DIR / 'copd1_highres_EXP_STD_COPD_img.nii.gz') | ||
|
||
test_setting_affine_parameters(filepath=filepath2) | ||
test_arbitary_center_of_rotation(filepath=filepath2) | ||
test_registration(fixed_filepath=filepath2, moving_filepath=filepath3) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.