Example photo from the MMLA dataset and labels generated from model. The image shows a group of zebras and giraffes at the Mpala Research Centre in Kenya.
This repo provides scripts to fine-tune YOLO models on the MMLA dataset. The MMLA dataset is a collection of low-altitude aerial footage of various species in different environments. The dataset is designed to help researchers and practitioners develop and evaluate object detection models for wildlife monitoring and conservation.
# install packages from requirements
conda create --name yolo_env --file requirements.txt
# OR using pip
pip install -r requirements.txt
# download the datasets from HuggingFace to local /dataset directory
mkdir -p dataset
cd data
# wilds dataset
git clone https://huggingface.co/datasets/imageomics/mmla_wilds
# opc dataset
git clone https://huggingface.co/datasets/imageomics/mmla_opc
# mpala dataset
git clone https://huggingface.co/datasets/imageomics/mmla_mpala
# run the script to split the dataset into train and test sets
python prepare_yolo_dataset.py
python frame_extractor.py --dataset wilds --dataset_path ./mmla_wilds --output_dir ./wildwing_wilds
python downsample.py --dataset wilds --dataset_path ./mmla_wilds --output_dir ./mmla_wilds --downsample_rate 0.1
cd model
# run the training script
python train.py
To evaluate the trained model on the test data:
# run the validate script
python validate.py
cd analysis
# run the evaluation script
bootstrap.ipynb
Our fine-tuned YOLO11m model achieves the following performance on the MMLA dataset:
Class | Images | Instances | Box(P) | R | mAP50 | mAP50-95 |
---|---|---|---|---|---|---|
all | 7,658 | 44,619 | 0.867 | 0.764 | 0.801 | 0.488 |
Zebra | 4,430 | 28,219 | 0.768 | 0.647 | 0.675 | 0.273 |
Giraffe | 868 | 1,357 | 0.788 | 0.634 | 0.678 | 0.314 |
Onager | 172 | 1,584 | 0.939 | 0.776 | 0.857 | 0.505 |
Dog | 3,022 | 13,459 | 0.973 | 0.998 | 0.995 | 0.860 |
See HuggingFace Model Repo for details and weights.
See HuggingFace Dataset Repo for MMLA dataset.
@article{kline2025mmla,
title={MMLA: Multi-Environment, Multi-Species, Low-Altitude Aerial Footage Dataset},
author={Kline, Jenna and Stevens, Samuel and Maalouf, Guy and Saint-Jean, Camille Rondeau and Ngoc, Dat Nguyen and Mirmehdi, Majid and Guerin, David and Burghardt, Tilo and Pastucha, Elzbieta and Costelloe, Blair and others},
journal={arXiv preprint arXiv:2504.07744},
year={2025}
}