This repository contains the source code for PromoterAI, a deep learning model for predicting the impact of promoter variants on gene expression, as described in Jaganathan, Ersaro, Novakovsky et al., Science (2025).
PromoterAI precomputed scores for all human promoter single nucleotide variants are freely available for academic and non-commercial research use. Please complete the license agreement; the download link will be shared via email shortly after submission. Scores range from –1 to 1, with negative values indicating under-expression and positive values indicating over-expression. Recommended thresholds are ±0.1, ±0.2, and ±0.5.
The simplest way to install PromoterAI for variant effect prediction is through:
pip install promoterai
For model training or to work directly with the source code, install PromoterAI by cloning the repository:
git clone https://github.com/Illumina/PromoterAI
cd PromoterAI
pip install -e .
PromoterAI supports both CPU and GPU execution, and has been tested on H100 (TensorFlow 2.15, CUDA 12.2, cuDNN 8.9.7) and A100 (TensorFlow 2.13, CUDA 11.4, cuDNN 8.6.0) GPUs. Functionality on other GPUs is expected but not officially tested.
Organize the variants into a tsv
file with the following columns: chrom
, pos
, ref
, alt
, strand
. If strand cannot be specified, create separate rows for each strand and aggregate predictions. Indels must be left-normalized and without special characters.
chrom pos ref alt strand
chr16 84145214 G T 1
chr16 84145333 G C 1
chr2 55232249 T G -1
chr2 55232374 C T -1
chr6 108295024 C CGG 1
chr6 108295024 CT C 1
Download the appropriate reference genome fa
file, then run:
promoterai \
--model_folder path/to/model \
--var_file path/to/variant_tsv \
--fasta_file path/to/genome_fa \
--input_length 20480
Scores will be added as a new column labeled score
, and written to a file created by appending the model folder name to the variant file name.
Create a tsv
file listing the genomic positions of interest (e.g., data/annotation/tss_hg38.tsv
, data/annotation/tss_mm10.tsv
), with the following required columns: chrom
, pos
, strand
.
chrom pos strand
chr1 11868 1
chr1 12009 1
chr1 29569 -1
chr1 17435 -1
Download the appropriate reference genome fa
file and regulatory profile bigwig
files. Organize the bigwig
file paths and their corresponding transformations into a tsv
file (e.g., data/bigwig/hg38.tsv
, data/bigwig/mm10.tsv
), where each row represents a prediction target, with the following required columns:
fwd
: path to the forward-strandbigwig
filerev
: path to the reverse-strandbigwig
filexform
: transformation applied to the prediction target
fwd rev xform
path/to/ENCFF245ZZX.bigWig path/to/ENCFF245ZZX.bigWig lambda x: np.arcsinh(np.nan_to_num(x))
path/to/ENCFF279QDX.bigWig path/to/ENCFF279QDX.bigWig lambda x: np.arcsinh(np.nan_to_num(x))
path/to/ENCFF480GFU.bigWig path/to/ENCFF480GFU.bigWig lambda x: np.arcsinh(np.nan_to_num(x))
path/to/ENCFF815ONV.bigWig path/to/ENCFF815ONV.bigWig lambda x: np.arcsinh(np.nan_to_num(x))
Generate TFRecord files by running the command below, which can be parallelized across chromosomes for speed:
for chrom in $(cut -f1 path/to/position_tsv | sort -u | grep -v chrom)
do
python -m promoterai.preprocess \
--tfr_folder path/to/output_tfrecord \
--tss_file path/to/position_tsv \
--fasta_file path/to/genome_fa \
--bigwig_files path/to/profile_tsv \
--chrom ${chrom} \
--input_length 32768 \
--output_length 16384 \
--chunk_size 256
done
For multi-species training, repeat the steps above for each species, writing TFRecord files to separate folders. Train a model on the generated TFRecord files by running:
python -m promoterai.train \
--model_folder path/to/trained_model \
--tfr_human_folder path/to/human_tfrecord \
--input_length 20480 \
--output_length 4096 \
--num_blocks 24 \
--model_dim 1024 \
--batch_size 32 \
--tfr_nonhuman_folders [path/to/mouse_tfrecord ...] # optional list
Fine-tune the trained model using the variant file data/annotation/finetune_gtex.tsv
by running:
python -m promoterai.finetune \
--model_folder path/to/trained_model \
--var_file path/to/finetune_gtex_tsv \
--fasta_file path/to/genome_fa \
--input_length 20480 \
--batch_size 8
The fine-tuned model will be saved in a folder created by appending _finetune
to the trained model folder name.
- Kishore Jaganathan: kjaganathan@illumina.com
- Gherman Novakovsky: gnovakovsky@illumina.com
- Kyle Farh: kfarh@illumina.com