bash training_scripts/HPPI.py
See the training_scripts directory for more examples. Take the HPPI.sh script as an example.
#!/bin/bash
NUM_GPUS=8
# 650M: esm2_t33_650M_UR50D
# 8M: esm2_t6_8M_UR50D
accelerate launch --num_processes=$NUM_GPUS training_scripts/train_HumanPPI.py \
--model_name_or_path "/cto_labs/AIDD/WEIGHTS/Protein/esm2_t33_650M_UR50D" \
--peft_type "LORA" \
--task_type "SEQ_CLS" \
--lora_r 8 \
--lora_alpha 16 \
--lora_dropout 0.1 \
--target_modules "query,value" \
--data_config_path "dataset/config/HumanPPI.yaml" \ # just define the dataset class and path etc.
--base_lr 5e-4 \
--classifier_lr_ratio 1 \ # classifier_lr = base_lr * classifier_lr_ratio
--beta1 0.9 --beta2 0.98 --wdecay 0.01 \
--optim_warmup_ratio 0.06 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 4 \
--dataloader_num_workers 8 \
--fp16 True \
--num_train_epochs 2 \
--evaluation_strategy "epoch" \ # evaluate every epoch
--save_strategy "epoch" \
--save_total_limit 3 \
--load_best_model_at_end True \
--logging_steps 10 \
--report_to "none" \
--output_dir "output/HumanPPI" # change to your own output directory