Skip to content

HyperPotatoNeo/Outsourced_Diffusion_Sampling

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

67 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

README

Training Scripts

This repository contains training scripts for finetuning various priors. Below are the commands to launch different training experiments.

Launch Commands

NVAE (FFHQ Dataset)

python3 train.py --exp "nvae_ffhq" --reward_prompt "A brown haired child." --replay_buffer 'uniform' --batch_size 64 --loss_batch_size 64 --wandb_track True --lr 3e-5 --prior_sample_prob 0.2 --replay_buffer_prob 0.2 --beta_start 30.0 --beta_end 100.0 --anneal_steps 5000 --diffusion_steps 25 --anneal False

GAN (FFHQ Dataset)

python3 train.py --exp "gan_ffhq"  --reward_prompt "A brown haired child." --replay_buffer 'uniform' --batch_size 64 --loss_batch_size 64 --wandb_track True --lr 3e-5 --prior_sample_prob 0.2 --replay_buffer_prob 0.2 --beta_start 30.0 --beta_end 100.0 --anneal_steps 5000 --diffusion_steps 25 --anneal False

GAN (CIFAR Dataset)

python3 train.py --exp "gan_cifar" --replay_buffer 'uniform' --batch_size 64 --loss_batch_size 64 --wandb_track True --lr 3e-5 --prior_sample_prob 0.2 --replay_buffer_prob 0.2 --beta_start 2.0 --beta_end 4.0 --anneal_steps 2000 --diffusion_steps 25 --anneal True --target_class 9 --compute_fid True

NVAE (CIFAR Dataset)

python3 train.py --exp "nvae_cifar" --replay_buffer 'uniform' --batch_size 64 --loss_batch_size 64 --wandb_track True --lr 3e-5 --prior_sample_prob 0.4 --replay_buffer_prob 0.1 --beta_start 2.0 --beta_end 4.0 --anneal_steps 2000 --diffusion_steps 25 --anneal True --target_class 1 --compute_fid True

CIFAR Training

python3 train.py --exp "cifar" --replay_buffer 'uniform' --batch_size 64 --loss_batch_size 64 --wandb_track True --lr 3e-5 --prior_sample_prob 0.4 --replay_buffer_prob 0.1 --beta_start 2.0 --beta_end 4.0 --anneal_steps 2000 --diffusion_steps 25 --anneal True --target_class 6 --compute_fid True

Stable Diffusion 3 (SD3) Alignment

python3 train.py --exp "sd3_align" --prompt "A quiet village is disrupted by a meteor strike" --reward_prompt "A quiet village is disrupted by a meteor strike" --replay_buffer 'uniform' --batch_size 64 --loss_batch_size 64 --wandb_track True --lr 3e-5 --prior_sample_prob 0.2 --replay_buffer_prob 0.2 --beta_start 25.0 --beta_end 100.0 --anneal_steps 5000 --diffusion_steps 25 --anneal False

Protein Structure

python3 prot_train.py --exp protein --batch_size 16 --wandb_track True --lr 1e-5 --beta_start 100.0 --beta_end 100.0 --diffusion_steps 20 --anneal False --langevin False --replay_buffer_prob 0.2 --replay_buffer reward --sampler_time 0. --loss_batch_size 16 --clip 0.05 

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •