EyeForBlind is a revolutionary mobile application developed to visual impaired individuals, helping them navigate safely and independently in complex urban environments.
Key Features:
- Critical Object Detection
- Identifying pedestrians
- Detecting traffic signals
- Locating pedestrian crosswalks
- Traffic Signal Analysis
- Interpreting traffic light states (green, red, yellow)
- Recognizing pedestrian crossing signals
- Safety Behavior Prediction
- Tracking pedestrian movements
- Predicting movement intentions
- Alerting potential collision risks
- User-Friendly Communication
- Converting visual information to audio
- Providing timely and clear warnings
- Python 3.7.0
- PyTorch
- OpenCV
- CUDA (optional, for GPU acceleration)
-
Clone the Repository
git clone https://github.com/HungDongne/Eye-for-blind.git cd Eye-for-blind
-
Create Virtual Environment
python -m venv .venv .venv\Scripts\activate # On Windows # source .venv/bin/activate # On macOS/Linux
-
Install Dependencies
pip install -r requirements.txt
-
Download Trained Model
- Download the pre-trained YOLOR model from Google Drive
- Move
yolor_p6.pt
to theyolormodel
folder
# Run with default settings
python superman.py
# Specify video and enable GPU
python superman.py --videoName demo2.mp4 --use_cuda 0
Argument | Type | Default | Description |
---|---|---|---|
--use_cuda |
int | 0 | Enable GPU processing (0: CPU, 1: GPU) |
--videoName |
str | 'demo2.mp4' | Input video file name |
--resize |
bool | False | Resize input video frames |
--size |
int | 1280 | Resize dimensions |
--video2frames |
bool | True | Convert video to individual frames |
Argument | Type | Default | Description |
---|---|---|---|
--device |
str | 'cpu' | Processing device (cpu or cuda) |
--weights |
str | 'yolormodel/yolor_p6.pt' | Path to pre-trained model weights |
--img-size |
int | 640 | Inference image size (pixels) |
--names |
str | 'yolormodel/data/coco.names' | Path to class names file |
--cfg |
str | 'yolormodel/yolor_p6.cfg' | Model configuration file path |
--conf-thres |
float | 0.25 | Object confidence threshold |
--iou-thres |
float | 0.5 | IoU threshold for Non-Maximum Suppression |
--classes |
int[] | None | Filter detection by specific class IDs |
--agnostic-nms |
flag | False | Enable class-agnostic Non-Maximum Suppression |
--augment |
flag | False | Enable augmented inference |
- Dong Quang Duy Hung - hungdqd1711@gmail.com
- Le Quy Duong - lequyduong1822@gmail.com
- Vo Le Hieu - huay1602@gmail.com
- Ha Truong Giang - hatruonggiang222@gmail.com