Skip to content

HungDongne/Eye-for-blind

Repository files navigation

EyeForBlind 👁️

EyeForBlind Logo

👀 Overview

EyeForBlind is a revolutionary mobile application developed to visual impaired individuals, helping them navigate safely and independently in complex urban environments.

Key Features:

  • Critical Object Detection
    • Identifying pedestrians
    • Detecting traffic signals
    • Locating pedestrian crosswalks
  • Traffic Signal Analysis
    • Interpreting traffic light states (green, red, yellow)
    • Recognizing pedestrian crossing signals
  • Safety Behavior Prediction
    • Tracking pedestrian movements
    • Predicting movement intentions
    • Alerting potential collision risks
  • User-Friendly Communication
    • Converting visual information to audio
    • Providing timely and clear warnings

EyeForBlind dashboard

🎥 Demo

Watch the demo video

🚀 Quick Start

Prerequisites

  • Python 3.7.0
  • PyTorch
  • OpenCV
  • CUDA (optional, for GPU acceleration)

Setup Steps

  1. Clone the Repository

    git clone https://github.com/HungDongne/Eye-for-blind.git
    cd Eye-for-blind
  2. Create Virtual Environment

    python -m venv .venv
    .venv\Scripts\activate  # On Windows
    # source .venv/bin/activate  # On macOS/Linux
  3. Install Dependencies

    pip install -r requirements.txt
  4. Download Trained Model

    • Download the pre-trained YOLOR model from Google Drive
    • Move yolor_p6.pt to the yolormodel folder

🖥️ Basic Usage

# Run with default settings
python superman.py

# Specify video and enable GPU
python superman.py --videoName demo2.mp4 --use_cuda 0

Command Line Arguments

General Arguments

Argument Type Default Description
--use_cuda int 0 Enable GPU processing (0: CPU, 1: GPU)
--videoName str 'demo2.mp4' Input video file name
--resize bool False Resize input video frames
--size int 1280 Resize dimensions
--video2frames bool True Convert video to individual frames

Object Detection Arguments

Argument Type Default Description
--device str 'cpu' Processing device (cpu or cuda)
--weights str 'yolormodel/yolor_p6.pt' Path to pre-trained model weights
--img-size int 640 Inference image size (pixels)
--names str 'yolormodel/data/coco.names' Path to class names file
--cfg str 'yolormodel/yolor_p6.cfg' Model configuration file path
--conf-thres float 0.25 Object confidence threshold
--iou-thres float 0.5 IoU threshold for Non-Maximum Suppression
--classes int[] None Filter detection by specific class IDs
--agnostic-nms flag False Enable class-agnostic Non-Maximum Suppression
--augment flag False Enable augmented inference

📞 Contact

About

No description or website provided.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •