Sentiment Analysis is conducted on various datasets after exploratory data analysis and data preprocessing, separately using variety of Machine Learning techniques
- Logistic Regression
- Newton CG
- SAG
- SAGA
- LBFGS
- Decision Tree Classifier
- Support Vector Machines
- Linear
- Poly
- RBF
- Sigmoid
- Majority Voting Ensemble
- Extreme Laerning Machines
- Tanh
- SinSQ
- Tribas
- Hardlim
- Artificial Neural Networks (Multi - Layer Perceptron) Gradient Descent
- Exploratory Data Analysis
- Data Preprocessing
- Cleaning
- Lemmatization
- Sentence Segmentation
- Word Tokenization
- Same consecutive chars changed to max 2 times
- Spelling Corrections
- Removal of #Hashtags, @Mentions, http//:URLs, etc (Noise 1)
- Removal of Special Unicode Characters (Noise 2)
- Chat Abbreviations conversions (Noise 3)
- Removal of Punctuations except `'` (Noise 4)
- Stop Words Removal (Noise 5)
- Parts of Speech Tagging
- Stemming & Lemmatization
- WhiteSpace Removals
- Chunking
- -1 : 15236
- 0 : 9465
- 1 : 15299
- -1 : 1117
- 0 : 1570
- 1 : 1186
- 0 : 29720
- 1 : 2242
- -1 : 35510
- 0 : 55213
- 1 : 72250