Skip to content

HideenKO/SaraDiamond

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 

Repository files navigation

💎 Diamond Price & Value Prediction with XGBoost

This project builds a machine learning pipeline that predicts diamond prices and evaluates their value-for-money score.

🚀 Project Workflow

  • 📊 Exploratory Data Analysis (EDA)
  • 🔧 Feature Engineering (OneHotEncoding)
  • 📈 Model Training with XGBoost
  • 🎯 Hyperparameter Optimization with Optuna
  • 🧠 Model Explainability using SHAP
  • 🗂️ Value Score Calculation: Predicted / Actual

📌 Main File: diamond_price_pipeline.pkl

You can load the model like this:

import pickle
with open("diamond_price_pipeline.pkl", "rb") as f:
    pipeline = pickle.load(f)

predictions = pipeline.predict(X_new)

## 📂 Folders
├── data/ # Исходные данные
├── model/ # Jupyter-ноутбуки
├── model/ # Готовая модель
└── README.md # Описание проекта

About

DiamondForSara

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published