This project builds a machine learning pipeline that predicts diamond prices and evaluates their value-for-money score.
- 📊 Exploratory Data Analysis (EDA)
- 🔧 Feature Engineering (OneHotEncoding)
- 📈 Model Training with XGBoost
- 🎯 Hyperparameter Optimization with Optuna
- 🧠 Model Explainability using SHAP
- 🗂️ Value Score Calculation:
Predicted / Actual
You can load the model like this:
import pickle
with open("diamond_price_pipeline.pkl", "rb") as f:
pipeline = pickle.load(f)
predictions = pipeline.predict(X_new)
## 📂 Folders
├── data/ # Исходные данные
├── model/ # Jupyter-ноутбуки
├── model/ # Готовая модель
└── README.md # Описание проекта