Skip to content

Harwian-Brama-DS/Hyper-Tunning-Analysis

Repository files navigation

📊 Aplikasi Prediksi Churn Pelanggan Telco | Telco Customer Churn Prediction App

Aplikasi interaktif berbasis Streamlit untuk menganalisis dan memprediksi pelanggan yang berpotensi churn di industri telekomunikasi.
Interactive Streamlit-based app for analyzing and predicting telecom customer churn.


🚀 Demo Langsung | Live Demo

Klik untuk membuka aplikasi:
Click to open the app:

👉 🌐 Buka Aplikasi / Open App


📁 Fitur Aplikasi | App Features

🇮🇩 Bahasa Indonesia

  • 📌 Tentang Saya
    Profil dan pengalaman sebagai Full Stack Data Science
  • 📈 Proyek
    Visualisasi interaktif: distribusi tenure, proporsi churn, boxplot biaya bulanan
  • 🤖 Machine Learning
    • Prediksi churn menggunakan Random Forest & Logistic Regression
    • Evaluasi model: Akurasi, Confusion Matrix, Feature Importance
  • 📊 Insight & Rekomendasi
    Insight dari data churn dan saran bisnis berbasis data
  • 📞 Kontak
    Informasi kontak: email, LinkedIn, WhatsApp, GitHub

🇺🇸 English

  • 📌 About Me
    Profile and experience as a Full Stack Data Scientist
  • 📈 Project
    Interactive visualizations: tenure distribution, churn proportion, monthly charges
  • 🤖 Machine Learning
    • Churn prediction with Random Forest & Logistic Regression
    • Model evaluation: Accuracy, Confusion Matrix, Feature Importance
  • 📊 Insights & Recommendation
    Business insights and data-driven recommendations
  • 📞 Contact
    Contact info: email, LinkedIn, WhatsApp, GitHub

🛠️ Teknologi & Library | Tech Stack

  • Python
  • Streamlit
  • Pandas, NumPy
  • Matplotlib, Seaborn
  • Scikit-learn

📦 Jalankan Secara Lokal | Run Locally

Bahasa Indonesia

# Clone repositori
git clone https://github.com/Brama17/Hyper-Tunning-Analysis.git
cd Hyper-Tunning-Analysis

# Install dependensi
pip install -r requirements.txt

# Jalankan aplikasi
streamlit run streamlit_churn_app.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published