Aplikasi interaktif berbasis Streamlit untuk menganalisis dan memprediksi pelanggan yang berpotensi churn di industri telekomunikasi.
Interactive Streamlit-based app for analyzing and predicting telecom customer churn.
Klik untuk membuka aplikasi:
Click to open the app:
- 📌 Tentang Saya
Profil dan pengalaman sebagai Full Stack Data Science - 📈 Proyek
Visualisasi interaktif: distribusi tenure, proporsi churn, boxplot biaya bulanan - 🤖 Machine Learning
- Prediksi churn menggunakan Random Forest & Logistic Regression
- Evaluasi model: Akurasi, Confusion Matrix, Feature Importance
- 📊 Insight & Rekomendasi
Insight dari data churn dan saran bisnis berbasis data - 📞 Kontak
Informasi kontak: email, LinkedIn, WhatsApp, GitHub
- 📌 About Me
Profile and experience as a Full Stack Data Scientist - 📈 Project
Interactive visualizations: tenure distribution, churn proportion, monthly charges - 🤖 Machine Learning
- Churn prediction with Random Forest & Logistic Regression
- Model evaluation: Accuracy, Confusion Matrix, Feature Importance
- 📊 Insights & Recommendation
Business insights and data-driven recommendations - 📞 Contact
Contact info: email, LinkedIn, WhatsApp, GitHub
- Python
- Streamlit
- Pandas, NumPy
- Matplotlib, Seaborn
- Scikit-learn
# Clone repositori
git clone https://github.com/Brama17/Hyper-Tunning-Analysis.git
cd Hyper-Tunning-Analysis
# Install dependensi
pip install -r requirements.txt
# Jalankan aplikasi
streamlit run streamlit_churn_app.py