Skip to content

Grand-Nord-Developpers-Community/live-coding-session-MachineLearning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 

Repository files navigation

Agricultural Product Price Prediction

📌 Project Overview

This project aims to develop a machine learning model capable of predicting agricultural product prices using advanced data analysis and machine learning techniques.

🎯 Objectives

  • Build an accurate predictive model for agricultural product prices
  • Compare different machine learning techniques
  • Provide a decision-support tool for farmers and traders

📦 Technical Requirements

Environment

  • Python 3.8+
  • Jupyter Notebook or compatible IDE

Dependencies

  • numpy
  • pandas
  • matplotlib
  • scikit-learn
  • joblib
  • seaborn
  • openpyxl

🚀 Installation

  1. Clone the repository
git clone https://github.com/Grand-Nord-Developpers-Community/live-coding-session-MachineLearning.git
cd agricultural-price-prediction
  1. Install dependencies
pip install -r requirements.txt

📊 Project Contents

  • ecocrops_dataset.xlsx: Agricultural prices dataset
  • Prediction Prix Produits agricole.ipynb: Main Jupyter Notebook
  • best_price_prediction_model.joblib: Exported model

🧠 Methodology

Data Processing Steps

  1. Data exploration
  2. Preprocessing and encoding
  3. Training and test data separation
  4. Multiple model training
  5. Comparative evaluation

Evaluated Models

  • Linear Regression
  • Decision Tree
  • Random Forest
  • Gradient Boosting

📈 Model Performance

Model MSE Performance
Linear Regression 481,529.90 0.96% Low
Decision Tree 119,260.23 75.5% Medium
Random Forest 94,404.43 80.6% Very Good
Gradient Boosting 89,783.21 81.5% Excellent

🔍 Model Usage

# Prediction example
predicted_price = predict_price(
    zone='MORA', 
    product='Rice', 
    month='April', 
    year=2024
)

🔮 Key Features

  • Agricultural price prediction
  • Price distribution analysis
  • Trend visualization
  • Best model export

📋 Limitations and Future Perspectives

  • Current accuracy: ±3-8% of average prices
  • Improvement areas:
    • Larger data collection
    • Integration of additional variables
    • Exploration of more advanced models

👥 Contributing

Contributions are welcome! Please follow these steps:

  1. Fork the project
  2. Create a feature branch
  3. Commit your changes
  4. Submit a pull request

📄 License

MIT

🙏 Acknowledgments

  • Development team
  • Contributors
  • Data sources

About

Live-coding-session-MachineLearning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published