Skip to content

Gaspard-GA/Research-Paper

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 

Repository files navigation

Research_Paper_Stata_Outputs.log#DOFILE

[cd "C:\Users\gaspa\OneDrive\Desktop\ECON 182\Research Project\Califronia Data"

import excel "Laborforce Annual Data"

rename (A B C D E F G) (county_name area_type year labor_force employment unemployment unemployment_rate)

drop if area_type != "County"

destring year, replace drop if year >= 1990 & year <= 2011 sort county_name year

/Merging "Stata dofile for ED Visits" into Stata dofile for Laborforce/

merge 1:1 county_name year using "ED_Visits Data Per County Per Year"

drop if _merge==1

save "Cleaned_data of Labor and ED Visit Stats", replace

/graph/

sort county_name year

egen county= group(county_name)

xtset county year

destring labor_force unemployment, replace

/* TWOWAY TSLINE GRAPH*/ bysort year: egen count_avg = mean(count) bysort year: egen labor_force_avg = mean(labor_force) bysort year: egen unemployment_avg = mean(unemployment)

/* county level avg ploted agenst year*/ twoway line (count_avg unemployment_avg) year, sort xlabel(2012(2)2024, angle(360)) ylabel(, angle(0)) xtitle("Year") ytitle("Average ED Visits") title("Average Emergency Dapartment Visits Over Time")

graph export "Avg ED Visits Over Time in Relation to Unemployment.png", replace as(png)

/Scatter Plot Graph/ gen count_10k = count / 10000

twoway (scatter count_10k unemployment), xtitle("Unemployment") ytitle("ED Visits by 10k") title("Emergency Department Visits in 10K Vs. Unemployment (2012-2023)", span)

graph export "Unmeployment Vs. ED Visits (per 10k).png", replace as(png)

/rescaling the graph devide unemployment by population and ED visits by population/

import excel "California Population data", clear firstrow

drop COUNTY

drop L

reshape long Y, i(county_name)

rename (_j Y) (year population)

graph export "Population data.png", replace as(png)

merge 1:1 county_name year using "Cleaned_data of Labor and ED Visit Stats", nogen

drop if area_type=="" drop H I J

destring unemployment, replace force gen upop = unemployment / population gen cpop = count / population

/* scatter plot using ratios*/ encode county_name, generate(county_id)

ssc install palettes, replace ssc install colrspace, replace

colorpalette tableau, n(48) nograph local colors `r(colors)'

local plot_cmd "" local legend_cmd ""

forvalues i = 1/48 { local color : word i' of colors'

local plot_cmd `plot_cmd' (scatter cpop upop if county_id == `i', mcolor("`color'") msymbol(circle_small) msize(vsmall))
local legend_cmd `legend_cmd' label(`i' "`:label county_id `i''")

}

twoway plot_cmd', legend(order(1/48) legend_cmd' size(tiny) rows(16)) xtitle("Unemployment by Population") ytitle("ED Visits by Population") title("Emergency Department Visits by County Vs. Unemployment (2012-2023)", span)

graph export "Twoway Unemployment Vs. ED Visits by County.png", replace as(png)

/* reggression of ED on unemplyment with the county fixed effects*/ ssc install reghdfe ssc install ftools

label variable cpop "ED Visits per Capita" label variable upop "Unemployment per Capita" /regression with Fixed effect and without/ reg cpop upop, vce(robust) outreg2 using results.tex, tex(frag) label bdec(3) replace

reghdfe cpop upop, absorb(county_name) vce(robust) outreg2 using results.tex, tex(frag) label append addtext(County FE, Yes)

/* regression of upop on cpop for LA county*/ reghdfe cpop upop if county_name == "Los Angeles County", vce(robust) outreg2 using results2.tex, tex(frag) label replace bdec(3)

/* regression of upop on cpop for Fresno County (#1 in agrecultural farming)*/ reghdfe cpop upop if county_name == "Fresno County", vce(robust) outreg2 using results2.tex, tex(frag) label append bdec(3)

/regression of upop on cpop for Tulare County (#1 in cattle farming)/ reghdfe cpop upop if county_name == "Tulare County", vce(robust) outreg2 using results2.tex, tex(frag) append label bdec(3)

/* comparasent 2 way graph of the three counties above*/ twoway (scatter cpop upop if county_name=="Los Angeles County", mcolor(blue)) (lfit cpop upop if county_name=="Los Angeles County", lcolor(blue)) (scatter cpop upop if county_name=="Fresno County", mcolor(red)) (lfit cpop upop if county_name=="Fresno County", lcolor(red)) (scatter cpop upop if county_name=="Tulare County", mcolor(green)) (lfit cpop upop if county_name=="Tulare County", lcolor(green)), legend(order(1 "Los Angeles County" 3 "Fresno County" 5 "Tulare County")) ytitle("Emergency Department Visits Rate") xtitle("Unemployment Rate") title("Industry Effects on ED Visits Vs. Unemployment in 3 Counties (2012-2023)", span)

[---------------------------------------------------------------------------------------------------------------------------------------------- name: log: C:\Users\gaspa\OneDrive\Desktop\ECON 182\Research Project\Califronia Data\Research_Paper_Stata_Outputs.log log type: text opened on: 19 Mar 2025, 16:16:56

. . import excel "Laborforce Annual Data" (10 vars, 16,054 obs)

. . rename (A B C D E F G) (county_name area_type year labor_force employment unemployment unemployment_rate)

. . drop if area_type != "County" (14,082 observations deleted)

. . destring year, replace year: all characters numeric; replaced as int

. drop if year >= 1990 & year <= 2011 (1,276 observations deleted)

. sort county_name year

. . /Merging "Stata dofile for ED Visits" into Stata dofile for Laborforce/ . . merge 1:1 county_name year using "ED_Visits Data Per County Per Year"

Result                      Number of obs
-----------------------------------------
Not matched                           120
    from master                       120  (_merge==1)
    from using                          0  (_merge==2)

Matched                               576  (_merge==3)
-----------------------------------------

. . drop if _merge==1 (120 observations deleted)

. . save "Cleaned_data of Labor and ED Visit Stats", replace file Cleaned_data of Labor and ED Visit Stats.dta saved

. . /graph/ . . sort county_name year

. . egen county= group(county_name)

. . xtset county year

Panel variable: county (strongly balanced) Time variable: year, 2012 to 2023 Delta: 1 unit

. . destring labor_force unemployment, replace labor_force: all characters numeric; replaced as long unemployment: all characters numeric; replaced as long

. . /* TWOWAY TSLINE GRAPH*/ . bysort year: egen count_avg = mean(count)

. bysort year: egen labor_force_avg = mean(labor_force)

. bysort year: egen unemployment_avg = mean(unemployment)

. . /* county level avg ploted agenst year*/ . twoway line (count_avg unemployment_avg) year, sort xlabel(2012(2)2024, angle(360)) ylabel(, angle(0)) xtitle("Year") ytitle("Average ED Vis

its") title("Average Emergency Dapartment Visits Over Time")

. . graph export "Avg ED Visits Over Time in Relation to Unemployment.png", replace as(png) file Avg ED Visits Over Time in Relation to Unemployment.png saved as PNG format

. . /Scatter Plot Graph/ . gen count_10k = count / 10000

. . twoway (scatter count_10k unemployment), xtitle("Unemployment") ytitle("ED Visits by 10k") title("Emergency Department Visits in 10K Vs. Une

mployment (2012-2023)", span)

. . graph export "Unmeployment Vs. ED Visits (per 10k).png", replace as(png) file Unmeployment Vs. ED Visits (per 10k).png saved as PNG format

. . /rescaling the graph devide unemployment by population and ED visits by population/ . . import excel "California Population data", clear firstrow (15 vars, 58 obs)

. . drop COUNTY

. . drop L

. . reshape long Y, i(county_name) (j = 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023)

Data Wide -> Long

Number of observations 58 -> 696
Number of variables 13 -> 3
j variable (12 values) -> _j xij variables: Y2012 Y2013 ... Y2023 -> Y

. . rename (_j Y) (year population)

. . graph export "Population data.png", replace as(png) file Population data.png saved as PNG format

. . merge 1:1 county_name year using "Cleaned_data of Labor and ED Visit Stats", nogen (variable county_name was str22, now str49 to accommodate using data's values)

Result                      Number of obs
-----------------------------------------
Not matched                           120
    from master                       120  
    from using                          0  

Matched                               576  
-----------------------------------------

. . drop if area_type=="" (120 observations deleted)

. drop H I J

.
. destring unemployment, replace force unemployment: all characters numeric; replaced as long

. gen upop = unemployment / population

. gen cpop = count / population

. . /* scatter plot using ratios*/ . encode county_name, generate(county_id)

. . ssc install palettes, replace checking palettes consistency and verifying not already installed... all files already exist and are up to date.

. ssc install colrspace, replace checking colrspace consistency and verifying not already installed... all files already exist and are up to date.

. . colorpalette tableau, n(48) nograph

. local colors `r(colors)'

. . local plot_cmd ""

. local legend_cmd ""

. . forvalues i = 1/48 { 2. local color : word i' of colors' 3.
. local plot_cmd plot_cmd' (scatter cpop upop if county_id == i', mcolor("color'") msymbol(circle_small) msize(vsmall)) 4. local legend_cmd legend_cmd' label(i' ":label county_id `i''") 5. }

. . twoway plot_cmd', legend(order(1/48) legend_cmd' size(tiny) rows(16)) xtitle("Unemployment by Population") ytitle("ED Visits by Population

") title("Emergency Department Visits by County Vs. Unemployment (2012-2023)", span) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) (note: named style circle_small not found in class symbol, default attributes used) 1/48 not an integer, option order() ignored

. . graph export "Twoway Unemployment Vs. ED Visits by County.png", replace as(png) file Twoway Unemployment Vs. ED Visits by County.png saved as PNG format

. . /* reggression of ED on unemplyment with the county fixed effects*/ . ssc install reghdfe checking reghdfe consistency and verifying not already installed... all files already exist and are up to date.

. ssc install ftools checking ftools consistency and verifying not already installed... all files already exist and are up to date.

. . label variable cpop "ED Visits per Capita"

. label variable upop "Unemployment per Capita"

. /regression with Fixed effect and without/ . reg cpop upop, vce(robust)

Linear regression Number of obs = 576 F(1, 574) = 0.65 Prob > F = 0.4220 R-squared = 0.0008 Root MSE = .14485


         |               Robust
    cpop | Coefficient  std. err.      t    P>|t|     [95% conf. interval]

-------------+---------------------------------------------------------------- upop | .2759347 .3434 0.80 0.422 -.3985391 .9504086 _cons | .3450966 .0121941 28.30 0.000 .3211461 .3690471

. outreg2 using results.tex, tex(frag) label bdec(3) replace results.tex dir : seeout

. . reghdfe cpop upop, absorb(county_name) vce(robust) (MWFE estimator converged in 1 iterations)

HDFE Linear regression Number of obs = 576 Absorbing 1 HDFE group F( 1, 527) = 103.42 Prob > F = 0.0000 R-squared = 0.9235 Adj R-squared = 0.9166 Within R-sq. = 0.1516 Root MSE = 0.0418


         |               Robust
    cpop | Coefficient  std. err.      t    P>|t|     [95% conf. interval]

-------------+---------------------------------------------------------------- upop | -1.557332 .1531358 -10.17 0.000 -1.858164 -1.256501 _cons | .4048326 .0052302 77.40 0.000 .394558 .4151073

Absorbed degrees of freedom: -----------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------+---------------------------------------| county_name | 48 0 48 | -----------------------------------------------------+

. outreg2 using results.tex, tex(frag) label append addtext(County FE, Yes) results.tex dir : seeout

. . /* regression of upop on cpop for LA county*/ . reghdfe cpop upop if county_name == "Los Angeles County", vce(robust) (MWFE estimator converged in 1 iterations)

HDFE Linear regression Number of obs = 12 Absorbing 1 HDFE group F( 1, 10) = 177.12 Prob > F = 0.0000 R-squared = 0.9407 Adj R-squared = 0.9348 Within R-sq. = 0.9407 Root MSE = 0.0067


         |               Robust
    cpop | Coefficient  std. err.      t    P>|t|     [95% conf. interval]

-------------+---------------------------------------------------------------- upop | -1.893803 .1422989 -13.31 0.000 -2.210865 -1.576742 _cons | .3408856 .0061784 55.17 0.000 .3271192 .3546519

. outreg2 using results2.tex, tex(frag) label replace bdec(3) results2.tex dir : seeout

. . /* regression of upop on cpop for Fresno County (#1 in agrecultural farming)*/ . reghdfe cpop upop if county_name == "Fresno County", vce(robust) (MWFE estimator converged in 1 iterations)

HDFE Linear regression Number of obs = 12 Absorbing 1 HDFE group F( 1, 10) = 73.86 Prob > F = 0.0000 R-squared = 0.7763 Adj R-squared = 0.7540 Within R-sq. = 0.7763 Root MSE = 0.0090


         |               Robust
    cpop | Coefficient  std. err.      t    P>|t|     [95% conf. interval]

-------------+---------------------------------------------------------------- upop | -1.257503 .146321 -8.59 0.000 -1.583527 -.9314797 _cons | .2101631 .0082623 25.44 0.000 .1917536 .2285725

. outreg2 using results2.tex, tex(frag) label append bdec(3) results2.tex dir : seeout

. . /regression of upop on cpop for Tulare County (#1 in cattle farming)/ . reghdfe cpop upop if county_name == "Tulare County", vce(robust) (MWFE estimator converged in 1 iterations)

HDFE Linear regression Number of obs = 12 Absorbing 1 HDFE group F( 1, 10) = 2.47 Prob > F = 0.1469 R-squared = 0.0925 Adj R-squared = 0.0018 Within R-sq. = 0.0925 Root MSE = 0.0343


         |               Robust
    cpop | Coefficient  std. err.      t    P>|t|     [95% conf. interval]

-------------+---------------------------------------------------------------- upop | .9868925 .6274976 1.57 0.147 -.4112593 2.385044 _cons | .22091 .0329674 6.70 0.000 .147454 .2943659

. outreg2 using results2.tex, tex(frag) append label bdec(3) results2.tex dir : seeout

. . /* comparasent 2 way graph of the three counties above*/ . twoway (scatter cpop upop if county_name=="Los Angeles County", mcolor(blue)) (lfit cpop upop if county_name=="Los Angeles County", lcolor(b

lue)) (scatter cpop upop if county_name=="Fresno County", mcolor(red)) (lfit cpop upop if county_name=="Fresno County", lcolor(red)) (scatte r cpop upop if county_name=="Tulare County", mcolor(green)) (lfit cpop upop if county_name=="Tulare County", lcolor(green)), legend(order(1 "Los Angeles County" 3 "Fresno County" 5 "Tulare County")) ytitle("Emergency Department Visits Rate") xtitle("Unemployment Rate") title("Ind ustry Effects on ED Visits Vs. Unemployment in 3 Counties (2012-2023)", span)

. . graph export "Twoway Comparasent Graph of Three Counties.png", replace as(png) file Twoway Comparasent Graph of Three Counties.png saved as PNG format

. . log close name: log: C:\Users\gaspa\OneDrive\Desktop\ECON 182\Research Project\Califronia Data\Research_Paper_Stata_Outputs.log log type: text closed on: 19 Mar 2025, 16:17:33

Uploading Research_Paper_Stata_Outputs.log…]()

graph export "Twoway Comparasent Graph of Three Counties.png", replace as(png)Uploading Stata dofile for Laborforce.do…]()

About

All code and files used in my research paper

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published