This project demonstrates object detection using the YOLO model with OpenCV and PyTorch. The project processes both images and videos, saving the results in specified output directories.
/D:/Perso/Project_IA/Object_Detection_Computer_Vison/
│
├── main.py
├── video_detection.py
├── utils.py
├── yolo/
│ ├── yolov3.cfg
│ ├── yolov3.weights
│ └── coco.names
├── data/
│ ├── images/
│ └── videos/
└── output/
├── images/
└── videos/
- Clone the repository.
- Download the YOLO configuration, weights, and class names files and place them in the
yolo/directory. - Install the required Python packages:
pip install opencv-python-headless numpy torch matplotlib
- Place your images in the
data/imagesdirectory. - Run the
main.pyscript:python main.py
- Processed images will be saved in the
output/imagesdirectory.
- Place your videos in the
data/videosdirectory. - Run the
video_detection.pyscript:python video_detection.py
- Processed videos will be saved in the
output/videosdirectory.
This project is licensed under the MIT License.

