Skip to content

Systematic DFT study of electronic properties in Group-VI transition metal dichalcogenides (TMDs) using GPAW. Includes band structure calculations, density of states analysis, and orbital projections for 1H, 1T, and 1T' phases. Course project for Computational Materials Science II at University of Crete.

License

Notifications You must be signed in to change notification settings

GVourvachakis/TMDs-Electronic-Structure-DFT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

4 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

TMD Electronic Structure Analysis using GPAW DFT

Project Overview

This repository contains the computational framework and results for the systematic study of electronic properties of group-VI two-dimensional transition metal dichalcogenides (TMDs) using density functional theory (DFT). The project was developed as part of the MEMY-512 Computational Materials Science II course at the University of Crete.

πŸ“‹ For Detailed Documentation: For a comprehensive description of our development process, theoretical background, computational setup, and detailed analysis methodology, please refer to the complete project report: tmd_report.pdf. The PDF contains extensive details on our thought process, validation procedures, and in-depth discussion of results that complement this markdown.

Research Objectives

The primary goal is to calculate and analyze the electronic structure properties of TMD monolayers, specifically:

  • Band structure calculations along high-symmetry k-point paths
  • Total density of states (DOS) analysis
  • Orbital-projected DOS (PDOS) to understand electronic contributions
  • Phase-dependent electronic properties across different structural polymorphs

Materials and Phases Studied

1H Phase Materials (Semiconducting):

  • MoSβ‚‚ (Molybdenum disulfide)
  • MoSeβ‚‚ (Molybdenum diselenide)
  • WSβ‚‚ (Tungsten disulfide)
  • WSeβ‚‚ (Tungsten diselenide)
  • MoTeβ‚‚ (Molybdenum ditelluride)
  • WTeβ‚‚ (Tungsten ditelluride)

Extended Phase Analysis:

  • 1T phase WTeβ‚‚ (Metallic octahedral coordination)
  • 1T' phase WTeβ‚‚ (Distorted 1T with potential topological properties)

Repository Structure

.
β”œβ”€β”€ tmd_report.pdf           ← Project description
β”œβ”€β”€ tmd_pres_slides.pdf.pdf  ← Presentation slides
β”œβ”€β”€ requirements.yaml        ← Conda environment  
└── TMD_codes/               ← All scripts, data & workflows  
    β”œβ”€β”€ tmd_bs.py            ← Band structure calculator  
    β”œβ”€β”€ dos_tmd.py           ← DOS & PDOS plotting module  
    β”œβ”€β”€ mx2_utils.py         ← Custom ASE MXβ‚‚ builder + helpers  
    β”œβ”€β”€ tmd_prior_runs/      ← Reference `.gpw` runs & band‐path images  
    β”œβ”€β”€ fails/               ← Divergent or unconverged calculations  
    └── MX2_<metal><X>_<p>/  ← Material-phase subdirectories  
        β”œβ”€β”€ initial/         ← β€œGuess” structures & input scripts  
        β”œβ”€β”€ relax/           ← Relaxation outputs (`*.gpw`, `.traj`)  
        β”œβ”€β”€ gs/              ← Ground‐state densities (`*_gs.gpw`)  
        β”œβ”€β”€ bs/              ← Band‐structure JSON + plots  
        β”œβ”€β”€ dos/             ← DOS/PDOS data & figures  
        └── img/             ← All generated figures (band paths, DOS, SOC insets)

Directory Organization

The project employs a hierarchical directory structure that mirrors the computational workflow:

  • Material-specific subdirectories follow the naming convention MX2_1p, where:

    • M = transition metal (Mo, W)
    • X = chalcogen (S, Se, Te)
    • p = structural phase (H, T, T')
  • Systematic file naming encodes material identity and calculation type

  • Complete computational provenance from initial structural guesses to converged geometries

  • Visualization consolidation in img/ subdirectories containing DOS plots, band diagrams, and orbital projections

Computational Modules

1. Band Structure Calculator (tmd_bs.py)

Performs electronic band structure calculations for TMD monolayers with support for all three structural phases.

Key Features:

  • Customized ASE MX2 builder distinguishing 1H from 2H phases
  • Support for distorted 1T' phase construction
  • Integrated workflow: structure building β†’ relaxation β†’ SCF β†’ band calculation
  • High-symmetry k-point path analysis (Ξ“-K-M-Ξ“)

Usage:

# Basic band structure calculation
mpirun -np 8 python tmd_bs.py --material MoS2 --phase "1H" --nprocs 4 --domain-parallel --kpt-parallel

# Skip relaxation for pre-optimized structures
mpirun -np 8 python tmd_bs.py --material WTe2 --phase "1T'" --skip-relax --band-parallel

Supported Arguments:

  • --material: TMD compound (MoS2, MoSe2, WS2, WSe2, MoTe2, WTe2)
  • --phase: Structural phase (1H, 1T, 1T')
  • --nprocs: MPI process count
  • --domain-parallel, --kpt-parallel, --band-parallel: Parallelization options
  • --skip-relax: Skip geometry optimization

2. DOS Analysis Module (dos_tmd.py)

Computes total and projected density of states from completed GPAW calculations.

Key Features:

  • Total DOS with spin-channel resolution
  • Orbital-projected DOS (metal d-orbitals, chalcogen p-orbitals)
  • Spin-orbit coupling (SOC) analysis for heavy elements
  • Band inversion analysis for 1T' phases

Usage:

# Basic DOS calculation
python dos_tmd.py mos2_1H_gs.gpw

# Full analysis with PDOS and SOC
python dos_tmd.py wte2_1T_gs.gpw --pdos --soc --width 0.05

# Custom energy range
python dos_tmd.py "mote2_1T'_gs.gpw" --emin -8 --emax 8 --resolution 0.01

Analysis Options:

  • --pdos: Enable orbital-projected DOS
  • --soc: Spin-orbit coupling analysis
  • --width: DOS broadening (default: 0.1 eV)
  • --emin/emax: Energy window relative to Fermi level

Phase-Specific Analysis

1H Phase (Semiconducting)

  • Electronic character: Direct-gap semiconductors
  • Critical points: Ξ“ and K valley analysis
  • Orbital contributions: Metal d-orbital and chalcogen p-orbital hybridization

1T Phase (Metallic)

  • Electronic character: Metallic or semi-metallic
  • Band features: d-orbital dominated conduction
  • Magnetic properties: Potential spin-polarization

1T' Phase (Topological)

  • Electronic character: Distorted 1T with metal-metal chains
  • SOC effects: Spin-orbit driven band inversions
  • Topological analysis: Band inversion around Β±0.5 eV

Environment Setup

Prerequisites

  • GPAW β‰₯ 25.1.0 with MPI support
  • ASE (Atomic Simulation Environment)
  • Python environment with scientific computing stack

Installation

# Create conda environment
conda env create -f requirements.yaml
conda activate tmd-dft

# Verify GPAW installation
python -c "import gpaw; print(gpaw.__version__)"

Computational Requirements

  • MPI-enabled GPAW installation for parallel calculations
  • Memory: Varies by system size and k-point sampling
  • Time: Band structure calculations typically require 2-8 hours on modern clusters

Reproducibility and Validation

The repository is designed for complete reproducibility of results presented in tmd_report.pdf. Users can:

  1. Verify existing calculations using provided reference data in tmd_prior_runs/
  2. Reproduce specific results by following the systematic workflow
  3. Extend to new materials using the modular calculation framework
  4. Test alternative parameters guided by the analysis in fails/ directory

Data Integrity

  • Complete provenance tracking from initial guesses to final results
  • Systematic naming conventions for easy data management
  • Benchmark comparisons through established reference calculations
  • Parameter sensitivity analysis documented in failed calculation logs

Output and Visualization

The computational workflow generates:

  1. Band structure plots along high-symmetry paths
  2. Total DOS with spin-channel resolution
  3. Orbital-projected DOS showing elemental and orbital contributions
  4. SOC analysis plots for heavy-element compounds
  5. Phase comparison visualizations highlighting electronic differences

Specialized Analyses

  • 1H phases: Band gap characterization and valley physics
  • 1T phases: Metallic band analysis and d-orbital splitting
  • 1T' phases: Topological band inversion and SOC-driven transitions

Contributing and Extension

The modular design enables straightforward extension to:

  • Additional TMD materials (group-V TMDs, heterostructures)
  • Enhanced DFT methods (hybrid functionals (e.g., B3LYP), GW-BSE corrections)
  • Advanced analysis techniques (topological invariants, transport properties)

References and Acknowledgments

This work was completed as part of the Computational Materials Science II course curriculum, utilizing the open-source GPAW DFT package and following established best practices for reproducible computational materials research.

πŸ“œ License & Citation

If you use these scripts or data, please cite:

Vourvachakis S. Georgios, β€œBand structure, total DOS, and orbital-projected DOS of group VI 2D TMDs…”, Department of Materials Science and Engineering, University of Crete, 2025.

About

Systematic DFT study of electronic properties in Group-VI transition metal dichalcogenides (TMDs) using GPAW. Includes band structure calculations, density of states analysis, and orbital projections for 1H, 1T, and 1T' phases. Course project for Computational Materials Science II at University of Crete.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages