Train ARC Tasks (number: 150, 179, 241, 380) with PPO (Proximal Policy Optimization Algorithms) agent.
- Create a new environment
conda create --name your_env_name python=3.9
- Activate the environment:
conda activate your_env_name
- Install pacakges
pip install -r requirements.txt
To run the example code (train task 150, eval 150)
python3 run.py train.task=150 eval.task=150
Choose the task within 150, 179, 241, 380
150 - 3 x 3 Horizontal flip task
179 - N x N diagonal flip task
241 - 3 x 3 diagonal flip task
380 - 3 x 3 CCW rotate task
This implementation is based on the work found at https://github.com/ku-dmlab/arc_trajectory_generator.